course Phy 201 9/13 10PM 024. `query 24
.............................................
Given Solution: `a** If the string goes slack just at the instant the weight reaches the 'top' of its circular path then we are assured that the centripetal acceleration is equal to the acceleration of gravity. If there is tension in the string then the weight is being pulled downward and therefore toward the center by a force that exceeds its weight. If the string goes slack before the weight reaches the top of its arc then the path isn't circular and our results won't apply to an object moving in a circular arc. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): This answer was a better explanation. Self-critique Rating:2 ********************************************* Question: `qWhy do you expect that, if the string is released exactly at the top of the circle, the initial velocity of the washer will be horizontal? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The washer is moving in the horizontal direction initially, and then gravitational force will begin to act on it, causing it to fall. Confidence rating: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The direction of an object moving in a circular arc is perpendicular to a radial line (i.e., a line from the center to a point on the circle). When the object is at the 'top' of its arc it is directly above the center so the radial line is vertical. Its velocity, being perpendicular to this vertical, must be entirely in the horizontal direction. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): The use of the radial line is this explanation states what I was trying to say scientifically. The movement was perpendicular to the radial line which would be totally horizontal. Self-critique Rating: 3 ********************************************* Question: `qWhat is the centripetal acceleration of the washer at the instant of release, assuming that it is released at the top of its arc and that it goes slack exactly at this point, and what was the source of this force? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: We let the string go slack so that the centripetal force would be equal to gravity. Therefore, once released, the force will be 9.8m/s/s which comes from gravity. Confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** Under these conditions, with the string slack and not exerting any force on the object, the centripetal acceleration will be equal to the acceleration of gravity. ** STUDENT QUESTION: could this answer be achieved from the equation given INSTRUCTOR RESPONSE: This conclusion is drawn simply because the object is traveling in a circular arc, and at this position the string is not exerting any force on it. The only force acting on it at this position is the gravitational force. Therefore its centripetal acceleration is equal to the acceleration of gravity. Knowing the radius of the circle and v, this allows us to make a good estimate of the acceleration of gravity. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: OK ********************************************* Question: `qQuery principles of physics and general college physics 7.02. Delivery truck 18 blocks north, 10 blocks east, 16 blocks south. What is the final displacement from the origin? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This question involves vectors. We simply need to find the total vertical displacement and the total horizontal. We will think of North as positive and East as positive. 18N-16S= 2 blocks=y 10 blocks=x 10^2+2^2=c^2 C=10.19blocks Confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe final position of the truck is 2 blocks south and 10 blocks east. This is equivalent to a displacement of +10 blocks in the x direction and -2 blocks in the y direction. The distance is therefore sqrt( (10 blocks)^2 + (-2 blocks)^2 ) = sqrt( 100 blocks^2 + 4 blocks^2) = sqrt(104 blocks^2) = sqrt(104) * sqrt(blocks^2) = 10.2 blocks. The direction makes and angle of theta = arcTan(-2 blocks / (10 blocks) ) = arcTan(-.2) = -12 degrees with the positive x axis, as measured counterclockwise from that axis. This puts the displacement at an angle of 12 degrees in the clockwise direction from that axis, or 12 degrees south of east. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: OK ********************************************* Question: `qQuery principles of physics and general college physics 7.18: Diver leaves cliff traveling in the horizontal direction at 1.8 m/s, hits the water 3.0 sec later. How high is the cliff and how far from the base does he land? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This is about projectiles! We know the initial horizontal velocity which is 1.8m/s and this will be constant. The time was 3 sec. We want to know the height. We also know that the acc in the vertical direction is 9.8m/s/s and the initial velocity in the vertical direction is 0m/s. We can use the equation: ‘ds=v0(t)+.5at^2 ‘ds=0+.5(9.8m/s/s)(3s^2) The truck fell 44.1m. The horizontal positional change is 1.8m/s(3sec) which gives 5.4m from the base. Confidence rating: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe diver's initial vertical velocity is zero, since the initial velocity is horizontal. Vertical velocity is characterized by the acceleration of gravity at 9.8 m/s^2 in the downward direction. We will choose downward as the positive direction, so the vertical motion has v0 = 0, constant acceleration 9.8 m/s^2 and time interval `dt = 3.0 seconds. The third equation of uniformly accelerated motion tells us that the vertical displacement is therefore vertical motion: `ds = v0 `dt + .5 a `dt^2 = 0 * 3.0 sec + .5 * 9.8 m/s^2 * (3.0 sec)^2 = 0 + 44 m = 44 m. The cliff is therefore 44 m high. The horizontal motion is characterized 0 net force in this direction, resulting in horizontal acceleration zero. This results in uniform horizontal velocity so in the horizontal direction v0 = vf = vAve. Since v0 = 1.8 m/s, vAve = 1.8 m/s and we have horizontal motion: `ds = vAve * `dt = 1.8 m/s * 3.0 s = 5.4 meters. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: OK ********************************************* Question: `qGen phy 3.13 A 44 N at 28 deg, B 26.5 N at 56 deg, C 31.0 N at 270 deg. Give your solution to the problem. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: We need to find all the components, add them, and then find the magnitude and angle of the new vector. A: X= 44Ncos(28)=38.8 Y=44sin(28)=20.7 B X=16.5(cos(56))=9.2 Y=16.5sin(56)=13.7 C X=31cos(270)=0 Y=31sin(270)=149 Total x= 48 Total y=183.4 Magnitude: 48^2+183.4^2=c^2 C=190 Angle=14.7 degrees above the horizontal. Confidence rating: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The solution given here is for a previous edition, in which the forces are Force A of 66 at 28 deg Force B of B 40 at 56 deg Force C of 46.8 at 270 deg These forces are very close to 2/3 as great as the forces given in the current edition, and all correct results will therefore be very close to 2/3 as great as those given here. Calculations to the nearest whole number: A has x and y components Ax = 66 cos(28 deg) = 58 and Ay = 66 sin(28 deg) = 31 Bhas x and y components Bx = 40 cos(124 deg) = -22 and By = 40 sin(124 deg) = 33 C has x and y components Cx = 46.8 cos(270 deg) = 0 and Cy = 46.8 sin(270 deg) = -47 A - B + C therefore has components Rx = Ax-Bx+Cx = 58 - (-22) + 0 = 80 and Ry = Ay - By + Cy = 31-33-47=-49, which places it is the fourth quadrant and gives it magnitude `sqrt(Rx^2 + Ry^2) = `sqrt(80^2 + (-49)^2) = 94 at angle tan^-1(Ry / Rx) = tan^-1(-49/53) = -32 deg or 360 deg - 32 deg = 328 deg. Thus A - B + C has magnitude 93 at angle 328 deg. B-2A has components Rx = Bx - 2 Ax = -22 - 2 ( 58 ) = -139 and Ry = By - 2 Ay = 33 - 2(31) = -29, placing the resultant in the third quadrant and giving it magnitude `sqrt( (-139)^2 + (-29)^2 ) = 142 at angle tan^-1(Ry / Rx) or tan^-1(Ry / Rx) + 180 deg. Since x < 0 this gives us angle tan^-1(-29 / -139) + 180 deg = 11 deg + 180 deg = 191 deg. Thus B - 2 A has magnitude 142 at angle 191 deg. Note that the 180 deg is added because the angle is in the third quadrant and the inverse tangent gives angles only in the first or fourth quandrant ( when the x coordinate is negative we'll be in the second or third quadrant and must add 180 deg). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: OK "