assignment 4

#$&*

course mth 272

Question: `q4.6.1 (previously 4.6.06 (was 4.5.06)) y = C e^(kt) thru (3,.5) and (4,5)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

5/.5=Ce^(k4)/Ce^(k3)

10=e^k

K=ln(10)

K=2.30

y = C e^(kt)

.5=Ce^(ln(10)3

C =.5/e^6.9

C =.000503

y = C e^(kt)

5=Ce^(2.3*4)

C=5/e^9.2

C=.000505

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a Substituting the coordinates of the first and second points into the form y = C e^(k t) we obtain the equations

.5 = C e^(3*k)and

5 = Ce^(4k) .

Dividing the second equation by the first we get

5 / .5 = C e^(4k) / [ C e^(3k) ] or

10 = e^k so

k = 2.3, approx. (i.e., k = ln(10) )

Thus .5 = C e^(2.3 * 3)

.5 = C e^(6.9)

C = .5 / e^(6.9) = .0005, approx.

The model is thus close to y =.0005 e^(2.3 t). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

3

*********************************************

Question: `q 4.6.2 (previously 4.6.10 (was 4.5.10)) solve dy/dt = 5.2 y if y=18 when t=0

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Dy/dt=5.2y

Dy/y=5.2(dt)

Ln l y l=5.2t+C

Y=e^(5.2t+C)

Y=Ae^(5.2t)

18=A*e^0

A=18

Y=18e^(5.2t)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a The details of the process:

dy/dt = 5.2y. Divide both sides by y to get

dy/y = 5.2 dt. This is the same as

(1/y)dy = 5.2dt. Integrate the left side with respect to y and the right with respect to t:

ln | y | = 5.2t +C. Therefore

e^(ln y) = e^(5.2 t + c) so

y = e^(5.2 t + c). This is the general function which satisfies dy/dt = 5.2 y.

Now e^(a+b) = e^a * e^b so

y = e^c e^(5.2 t). e^c can be any positive number so we say e^c = A, A > 0.

y = A e^(5.2 t). This is the general function which satisfies dy/dt = 5.2 y.

When t=0, y = 18 so

18 = A e^0. e^0 is 1 so

A = 18. The function is therefore

y = 18 e^(5.2 t). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

3

*********************************************

Question: `q4.6.5 (previously 4.6.25 (was 4.5.25)) Init investment $1000, rate 12%.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A=Pe^rt

A=1000e^.12t

2*1000=1000e^.12t

2=e^.12t

Ln(2)=.12t

T=ln(2)/.12

T=5.8

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a

Rate = .12 and initial amount is $1000 so we have

amt = $1000 e^(.12 t).

The equation for the doubling time is

1000 e^(.105 t) = 2 * 1000.

Dividing both sides by 1000 we get

e^(.12 t) = 2. Taking the natural log of both sides

.12t = ln(2) so that

t = ln(2) / .12 = 5.8 yrs approx.

after 10 years we have

amt = 1000e^(.12(10)) = $3 320

after 25 yrs we have

amt = 1000 e^(.12(25)) = $20 087

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

3

*********************************************

Question: `q 4.6.8 (previously 4.6.44 (was 4.5.42)) demand fn p = C e^(kx) if when p=$5, x = 300 and when p=$4, x = 400

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4/5=Ce^(k400)/Ce^(k300)

.8=e^k100

Ln(.8)/100=k

K=-.0022

5=Ce^(300 Ln(.8)/100)

5/(e^(300 Ln(.8)/100)=C

C=9.76

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a You get 5 = C e^(300 k) and 4 = C e^(400 k).

If you divide the first equation by the second you get

5/4 = e^(300 k) / e^(400 k) so

5/4 = e^(-100 k) and

k = ln(5/4) / (-100) = -.0022 approx..

Then you can substitute into the first equation:

}

5 = C e^(300 k) so

C = 5 / e^(300 k) = 5 / [ e^(300 ln(5/4) / -100 ) ] = 5 / [ e^(-3 ln(5/4) ] .

This is easily evaluated on your calculator. You get C = 9.8, approx.

So the function is p = 9.8 e^(-.0022 t). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

3

*********************************************

Question: `q 4.6.8 (previously 4.6.44 (was 4.5.42)) demand fn p = C e^(kx) if when p=$5, x = 300 and when p=$4, x = 400

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4/5=Ce^(k400)/Ce^(k300)

.8=e^k100

Ln(.8)/100=k

K=-.0022

5=Ce^(300 Ln(.8)/100)

5/(e^(300 Ln(.8)/100)=C

C=9.76

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a You get 5 = C e^(300 k) and 4 = C e^(400 k).

If you divide the first equation by the second you get

5/4 = e^(300 k) / e^(400 k) so

5/4 = e^(-100 k) and

k = ln(5/4) / (-100) = -.0022 approx..

Then you can substitute into the first equation:

}

5 = C e^(300 k) so

C = 5 / e^(300 k) = 5 / [ e^(300 ln(5/4) / -100 ) ] = 5 / [ e^(-3 ln(5/4) ] .

This is easily evaluated on your calculator. You get C = 9.8, approx.

So the function is p = 9.8 e^(-.0022 t). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

3

*********************************************

Question: `q 4.6.8 (previously 4.6.44 (was 4.5.42)) demand fn p = C e^(kx) if when p=$5, x = 300 and when p=$4, x = 400

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4/5=Ce^(k400)/Ce^(k300)

.8=e^k100

Ln(.8)/100=k

K=-.0022

5=Ce^(300 Ln(.8)/100)

5/(e^(300 Ln(.8)/100)=C

C=9.76

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

3

.............................................

Given Solution:

`a You get 5 = C e^(300 k) and 4 = C e^(400 k).

If you divide the first equation by the second you get

5/4 = e^(300 k) / e^(400 k) so

5/4 = e^(-100 k) and

k = ln(5/4) / (-100) = -.0022 approx..

Then you can substitute into the first equation:

}

5 = C e^(300 k) so

C = 5 / e^(300 k) = 5 / [ e^(300 ln(5/4) / -100 ) ] = 5 / [ e^(-3 ln(5/4) ] .

This is easily evaluated on your calculator. You get C = 9.8, approx.

So the function is p = 9.8 e^(-.0022 t). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

&#This looks good. Let me know if you have any questions. &#