assignment 18

#$&*

course mth 272

Question: `qQuery problem 6.2.54 (7th edition 6.3.54) time for disease to spread to x individuals is 5010 integral(1/[ (x+1)(500-x) ]; x = 1 at t = 0.YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1 / ( (x+1)(500-x) ) = A / (x+1) + B / (500-x)

A(500-x) + B(x+1) = 1 so

A = 1 / 501 and B = 1/501

5010 [ 1 / (501 (x+1) ) + 1 / (501 (500 - x)) ] = 10 [ 1/(x+1) + 1 / (500 - x) ]

t = INT(5010 ( 1 / (x+1) + 1 / (500 - x) ) , x)

t = 10 [ ln (x+1) - ln (500-x) + c]

c = 5.52

t = 10 [ ln (x+1) - ln (500-x) + 5.52] = 10 ln( (x+1) / (500 - x) ) + 55.2

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a 1 / ( (x+1)(500-x) ) = A / (x+1) + B / (500-x) so

A(500-x) + B(x+1) = 1 so

A = 1 / 501 and B = 1/501.

The integrand becomes 5010 [ 1 / (501 (x+1) ) + 1 / (501 (500 - x)) ] = 10 [ 1/(x+1) + 1 / (500 - x) ].

Thus we have

t = INT(5010 ( 1 / (x+1) + 1 / (500 - x) ) , x).

Since an antiderivative of 1/(x+1) is ln | x + 1 | and an antiderivative of 1 / (500 - x) is - ln | 500 - x | we obtain

t = 10 [ ln (x+1) - ln (500-x) + c].

(for example INT (1 / (500 - x) dx) is found by first substituting u = 1 - x, giving du = -dx. The integral then becomes INT(-1/u du), giving us - ln | u | = - ln | 500 - x | ).

We are given that x = 1 yields t = 0. Substituting x = 1 into the expression t = 10 [ ln (x+1) - ln (500-x) + c], and setting the result equal to 0, we get c = 5.52, appxox.

So t = 10 [ ln (x+1) - ln (500-x) + 5.52] = 10 ln( (x+1) / (500 - x) ) + 55.2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `qHow long does it take for 75 percent of the population to become infected?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t = 10 ln( (375+1) / (500 - (.75*500) ) + 55.2 = 66.2

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

75% of the population of 500 is 375. Setting x = 375 we get

t = 10 ln( (375+1) / (500 - 375) ) + 55.2 = 66.2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `qWhat integral did you evaluate to obtain your result?

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qHow many people are infected after 100 hours?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t = 10 ln( (x+1) / (500 - x) ) + 55.2

10 ln( (x+1) / (500 - x) ) = t - 55.2

ln( (x+1) / (500 - x) ) = (t - 55.2 ) / 10

(x+1) / (500 - x) = e^( (t-55.2) / 10 )

x + 1 = e^( (t-55.2) / 10 ) ( 500 - x)

x + 1 = 500 e^( (t-55.2) / 10 ) - x e^( (t-55.2) / 10 )

x + x e^( (t-55.2) / 10 ) = 500 e^( (t-55.2) / 10 ) - 1

x ( 1 + e^( (t-55.2) / 10 ) ) = 500 e^( (t-55.2) / 10 ) - 1

x = (500 e^( (t-55.2) / 10 ) - 1) / ( 1 + e^( (t-55.2) / 10 ) )

x = 494.4

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a t = 10 ln( (x+1) / (500 - x) ) + 55.2. To find x we solve this equation for x:

10 ln( (x+1) / (500 - x) ) = t - 55.2 so

ln( (x+1) / (500 - x) ) = (t - 55.2 ) / 10. Exponentiating both sides we have

(x+1) / (500 - x) = e^( (t-55.2) / 10 ). Multiplying both sides by 500 - x we have

x + 1 = e^( (t-55.2) / 10 ) ( 500 - x) so

x + 1 = 500 e^( (t-55.2) / 10 ) - x e^( (t-55.2) / 10 ). Rearranging we have

x + x e^( (t-55.2) / 10 ) = 500 e^( (t-55.2) / 10 ) - 1. Factoring the left-hand side

x ( 1 + e^( (t-55.2) / 10 ) ) = 500 e^( (t-55.2) / 10 ) - 1 so that

x = (500 e^( (t-55.2) / 10 ) - 1) / ( 1 + e^( (t-55.2) / 10 ) ).

Plugging t = 100 into this expression we actually get x = 494.4, approx.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks good. Let me know if you have any questions. &#