course Mth 151 eQyۨ{ʖR|箤assignment #001
......!!!!!!!!...................................
16:59:41
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:05:06 `q001. Note that there are 4 questions in this assignment. `q001. Let A stand for the collection of all whole numbers which have at least one even digit (e.g., 237, 864, 6, 3972 are in the collection, while 397, 135, 1, 9937 are not). Let A ' stand for the collection of all whole numbers which are not in the collection A. Let B stand for the collection { 3, 8, 35, 89, 104, 357, 4321 }. What numbers do B and A have in common? What numbers do B and A' have in common?
......!!!!!!!!...................................
RESPONSE --> A={237, 864, 6, 3972} B= {3, 8, 35, 89, 104, 357, 4321 } Common Numbers: 2,3,4,7 confidence assessment: 1
.................................................
......!!!!!!!!...................................
17:05:31 Of the numbers in B, 8, 89, 104, 4321 each have at least one even digit and so are common to both sets. 3 is odd, both of the digits in the number 35 are odd, as are all three digits in the number 357. Both of these numbers are therefore in A ' .
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 0
.................................................
......!!!!!!!!...................................
17:06:35 `q002. I have in a room 8 people with dark hair brown, 2 people with bright red hair, and 9 people with light brown or blonde hair. Nobody has more than one hair color. Is it possible that there are exactly 17 people in the room?
......!!!!!!!!...................................
RESPONSE --> no confidence assessment: 3 06-15-2007 23:44:18 Coded lines searched and replaced
course Mth 151 eQyۨ{ʖR|箤assignment #001
......!!!!!!!!...................................
16:59:41
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:05:06 `q001. Note that there are 4 questions in this assignment. `q001. Let A stand for the collection of all whole numbers which have at least one even digit (e.g., 237, 864, 6, 3972 are in the collection, while 397, 135, 1, 9937 are not). Let A ' stand for the collection of all whole numbers which are not in the collection A. Let B stand for the collection { 3, 8, 35, 89, 104, 357, 4321 }. What numbers do B and A have in common? What numbers do B and A' have in common?
......!!!!!!!!...................................
RESPONSE --> A={237, 864, 6, 3972} B= {3, 8, 35, 89, 104, 357, 4321 } Common Numbers: 2,3,4,7 confidence assessment: 1
.................................................
......!!!!!!!!...................................
17:05:31 Of the numbers in B, 8, 89, 104, 4321 each have at least one even digit and so are common to both sets. 3 is odd, both of the digits in the number 35 are odd, as are all three digits in the number 357. Both of these numbers are therefore in A ' .
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 0
.................................................
......!!!!!!!!...................................
17:06:35 `q002. I have in a room 8 people with dark hair brown, 2 people with bright red hair, and 9 people with light brown or blonde hair. Nobody has more than one hair color. Is it possible that there are exactly 17 people in the room?
......!!!!!!!!...................................
RESPONSE --> no confidence assessment: 3
.................................................
......!!!!!!!!...................................
17:06:48 If we assume that dark brown, light brown or blonde, and bright red hair are mutually exclusive (i.e., someone can't be both one category and another, much less all three), then we have at least 8 + 2 + 9 = 19 people in the room, and it is not possible that we have exactly 17.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
17:08:52 `q003. I have in a room 6 people with dark hair and 10 people with blue eyes. There are only 14 people in the room. But 10 + 6 = 16, which is more than 14. How can this be?
......!!!!!!!!...................................
RESPONSE --> 2 people do not have blue eyes confidence assessment: 3
.................................................
......!!!!!!!!...................................
17:09:10 The key here is that there is nothing mutully exclusive about these categories-a person can have blue eyes as well as dark hair. So if there are 2 people in the room who have dark hair and blue eyes, which is certainly possible, then when we add 10 + 6 = 16 those two people would be counted twice, once among the 6 blue-eyed people and once among the 10 dark-haired people. So the 16 we get would be 2 too high. To get the correct number we would have to subtract the 2 people who were counted twice to get 16 - 2 = 14 people.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 2
.................................................
......!!!!!!!!...................................
17:11:19 `q004. In a set of 100 child's blocks 60 blocks are cubical and 40 blocks are cylindrical. 30 of the blocks are red and 20 of the red blocks are cubical. How many of the cylindrical blocks are red?
......!!!!!!!!...................................
RESPONSE --> 10 cylindrical blocks are red confidence assessment: 3
.................................................
PU톫{[Ǹ؏ assignment #003 003. Intersection, Union, Complement, de Morgans Laws Liberal Arts Mathematics I 06-03-2007
......!!!!!!!!...................................
17:12:08
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:15:50 `q001. Note that there are 5 questions in this assignment. Again we have a total of 35 people in a room. Of these, 20 have dark hair and 15 have bright eyes. There are 8 people with dark hair and bright eyes. Let A stand for the collection of people who have dark hair and B for the collection who have bright eyes. The Intersection of these two collections is denoted A ^ B, and stands for the collection of all people who have both dark hair and bright eyes. The Union of these two collections is denoted A U B, and stands for the collection of all people who have at least one of these characteristics. In terms of the diagram you made for the preceding problem, describe the collection A ^ B and the collection A U B. Give the number of people in each of these collections (these numbers are designated by the notation n ( A ^ B) and n(A U B) ). Refer to the diagrams you have made.
......!!!!!!!!...................................
RESPONSE --> confidence assessment: 0
.................................................
......!!!!!!!!...................................
17:16:06 The collection A ^ B consists of all the people with both dark hair and bright eyes, which corresponds to the overlap between the two circles (region I). There are 8 people in this overlap, so we say n(A ^ B) = 8. The collection A U B consists of all the people who have least one of the characteristics. This would include the 12 people with dark hair but not bright eyes, located in the first circle but outside the overlap (region II); plus the 7 people with bright eyes but not dark hair, located in the second circle but outside the overlap (region III); plus the 8 people with both characteristics, located in the overlap (region I). Thus we include the 12 + 8 + 7 = 27 people who might be located anywhere within the two circles.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
17:16:30 `q002. Continuing the preceding example, we let A' stand for the people who are not in the collection A, and we let B' stand for the people who are not in the collection B. What are the characteristics of the people in A', and what characterizes people in B' ? What are n(A ') and n(B '), the numbers of people in A' and B' ?
......!!!!!!!!...................................
RESPONSE --> confidence assessment: 0
.................................................
......!!!!!!!!...................................
17:16:40 Of the 35 people, those in A' are those outside of A. Since A consists of all the dark-haired people, A' consists of all the people lacking dark hair. This includes the 8 people outside of both circles (people having neither dark hair nor bright eyes, region IV) and the 7 people in the second circle but outside the overlap (people having bright eyes but not dark hair, region III). n(A ' ) is therefore 8 + 7 = 15. Since B consists of all the bright-eyed people, B' consists of all the people lacking bright eyes. This would include the 8 people outside both circles (region IV), all of whom lack both dark hair and bright eyes, and the 12 people in the first circle but outside the overlap (region II), who have dark hair but not bright eyes. n ( B ' ) is therefore 12 + 8 = 20.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 0
.................................................
......!!!!!!!!...................................
17:17:02 `q003. ( A U B ) ' stands for the everyone outside A U B, and ( A ^ B ) ' stands for everyone outside A ^ B. What characterizes the people in each of these collections, and how many people are there in each?
......!!!!!!!!...................................
RESPONSE --> confidence assessment: 0
.................................................
......!!!!!!!!...................................
17:17:13 A U B consists of everyone having at least one of the characteristics (dark hair, bright eyes), and is represented by the numbers in the two circles (regions I, II, III). ( A U B ) ' consists of the people who do not have at least one of the characteristics, and is represented by the number outside both circles (region IV). This number is 8, representing the 8 people who have neither dark hair nor bright eyes. A ^ B stands for all the people with both of the two characteristics (represented by the overlap, region I), so ( A ^ B ) ' stands for all the people who do not have both of the two characteristics (represented by everything outside region I, or regions II, III and IV). [ Note that (A ^ B)' is not the same as the collection of people who have neither characteristic. Anyone who does not have both characteristics will be in ( A ^ B ) ' . ] ( A ^ B )' must include those who have neither characteristic, and also those who have only one of the characteristics. The 8 people outside both circles, the 12 people in the first circle but outside the overlap, and the 7 people in the second circle but outside the overlap all lack at least one characteristic to, so these 8 + 12 + 7 = 27 people make up( A ^ B ) '.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 2
.................................................
......!!!!!!!!...................................
17:17:34 `q004. How many people are in A ' U B ', and how could those people be characterized? Answer the same for A ' ^ B '.
......!!!!!!!!...................................
RESPONSE --> Not really sure how these were worked. confidence assessment: 0
.................................................
......!!!!!!!!...................................
17:17:45 A ' U B ' consists of all the people who are in at least one of the sets A ' or B '. A ' consists of all the people who do not have dark hair, represented by every region of the diagram which does not include any of A. This will include the 7 people in B who are outside the overlapping region, and the 8 people who are outside of both A and B (regions III and IV. Since A consists of regions I and II, A' consists of regions III and IV). B ' consists of all the people who do not have bright eyes, represented by every region of the diagram which does not include any of B (regions II and IV). This will include the 12 people in A but outside the overlap, and the 8 people outside of both A and B. Thus A ' U B ' consists of everyone in at least one of A ' or B ', including the 7 people in B but outside the overlap (region III), the 12 people in A let outside the overlap (region II), and the 8 people outside of both A and B (region IV). These will be the people who lack at least one of the characteristics dark hair and/or bright eyes. Thus n(A' U B') = 7 + 12 + 8 = 27. Note that these are the same 27 people who are in ( A ^ B ) '. So at least in this case, ( A ^ B ) ' = A ' U B '. A ' ^ B ' consists of all the people in both A ' and B '. As before A ' includes the 7 people in B but not A (region III) as well as the 8 people outside both A and B (region IV), and B ' includes the 12 people in A but not B (region II) as well as the 8 people outside both A and B (region IV). The people in both A ' and B ' will be the 8 people outside both A and B, those who have neither dark hair nor bright eyes. We note that this is the same as the set ( A U B ) ', so at least for the present case we see that ( A ' ^ B ' = ( A U B ) '.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 0
.................................................
......!!!!!!!!...................................
17:17:52 `q005. Succinctly describe the relationships between ( A U B ) ', A ' U B ', (A ^ B) ' and A ' ^ B '.
......!!!!!!!!...................................
RESPONSE --> confidence assessment: 0
.................................................
......!!!!!!!!...................................
17:18:02 ( A U B ) ' = A ' ^ B ' and ( A ^ B ) ' = A ' U B '. The collection outside of the union A U B is the intersection A ' ^ B ', and the collection outside the intersection A ^ B is the union A ' U B '. The ' operation changes union to intersection and intersection to union.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 0
.................................................
쒍M Student Name: assignment #002
.................................................
......!!!!!!!!...................................
17:21:30
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:26:49 Note that there are 2 questions in this assignment. `q001. We can represent the collection consisting of the letters a, b, c, d, e, f by a circle in which we write these letters. If we have another collection consisting of the letters a, c, f, g, k, we could represent it also by a circle containing these letters. If both collections are represented in the same diagram, then since the two collections have certain elements in common the two circles should overlap. Sketch a diagram with two overlapping circles. The two circles will create four regions (click below on 'Next Picture'). The first region is the region where the circles overlap. The second region is the one outside of both circles. The third region is the part of the first circle that doesn't include the overlap. The fourth region is the part of the second circle that doesn't include the overlap. Number these regions with the Roman numerals I (the overlap), II (first circle outside overlap), III (second circle outside overlap) and IV (outside both circles). Let the first circle contain the letters in the first collection and let the second circle contain the letters in the second collection, with the letters common to both circles represented in the overlapping region. Which letters, if any, go in region I, which in region II, which in region III and which in region IV?
......!!!!!!!!...................................
RESPONSE --> region I = a,c,f region II = a, b, c, d, e, f region III = a,c,f,g,k region IV = a, b, c, d, e, f, g, k
.................................................
......!!!!!!!!...................................
17:27:24 The letters a, c and f go in the overlapping region, which we called Region I. The remaining letters in the first collection are b, d, and e, and they go in the part of the first circle that does not include the overlapping region, which we called Region II. The letters g and k go in the part of the second circle that does not include the overlapping region (Region III). There are no letters in Region IV. Click below on 'Next Picture' for a picture.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:31:13 Of the 20 dark-haired people in the preceding example, 8 also have bright eyes. This leaves 12 dark-haired people for that part of the circle that doesn't include the overlap (region I). The 8 having both dark hair and bright eyes will occupy the overlap (region I). Of the 15 people with bright eyes, 8 also have dark hair so the other 7 do not have dark hair, and this number will be represented by the part of the second circle that doesn't include the overlap (region III). We have accounted for 12 + 8 + 7 = 27 people. This leaves 35-27 = 8 people who are not included in either of the circles. The number 8 can be written outside the two circles (region IV) to indicate the 8 people who have neither dark hair nor bright eyes (click below on 'Next Picture').
......!!!!!!!!...................................
RESPONSE --> Region 1 = 8 Region 2 = 20 Region 3 = 15
.................................................
"