math23open

#$&*

course Mth 151

1/23/12 11:57PM

003. `Query 3

*********************************************

Question: `qQuery 2.3.15 This might differ from the problem as given in the text, but you should be able to answer it for the given sets: universal set U = {a,b, c,…,g}, X={a,c,e,g}, Y = {a,b,c}, Z = {b, ..., f}

What is the set ( Y ^ Z ' ) U X?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First you would do the intersection of Y and Z’ which would only be {a}, then you would do the union of that and X which would be {a, c, e, g}.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a**Z' = {a,g}, the set of all elements of the universal set not in Z. Y ^ Z' = {a}, since a is the only element common to both Y and Z'.

So (Y ^ Z') U X = {a, c, e, g}, the set of all elements which lie in at least one of the sets (Y ^ Z') U X. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `qGive the intersection of the two sets Y and Z '

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y = {a, b, c} and Z’ = {a, g} and the intersection is {a} because a is the only letter in both sets, so Y ^ Z’ = {a}

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a**Z' = {a,g}, the set of all elements of the universal set not in Z. Y ^ Z' = {a}, since a is the only element common to both Y and Z'.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `qQuery 2.3.32 (formerly 2.3.30). This was not assigned, but you answered a series of similar questions and should be able to give a reasonable answer to this one: Describe in words (A ^ B' ) U (B ^ A')

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(A^ B’) U (B ^ A’) would include elements that are in both A and not B or are in both B and not A.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** a description, not using a lot of set-theoretic terms, of (A ^ B' ) U (B ^ A') would be, all the elements that are in A and not in B, or that are not in A and are in B

Or you might want to say something like 'elements which are in A but not B OR which are in B but not A'.

STUDENT SOLUTION WITH INSTRUCTOR COMMENT:everything that is in set A and not in set B or everything that is in set B and is not in set A.

INSTRUCTOR COMMENT: I'd avoid the use of 'everything' unless the word is necessary to the description. Otherwise it's likely to be misleading. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `q2.3.53 (formerly 2.3.51) Is it always or not always true that n(A U B) = n(A)+n(B)? This was not among the assigned questions but having completed the assignment you should be able to answer this.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The statement is not always true because if there are numbers that are the same in both sets it will be counted once in n(A U B), but they will be counted twice in n(A)+n(B). For example if A = {a, b, c, d} and B = {c, d, e, f} then n(A U B) = 2 + 2 + 4 and n(A)+n(B) = 4 + 4 = 8.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** This conclusion is contradicted by many examples, including the one of the dark-haired and bright-eyed people in the q_a_.

Basically n(A U B) isn't equal to n(A) + n(B) if there are some elements which are in both sets--i.e., in the intersection.

}

MORE DETAIL: The statement can be either true or false, depending on the sets A and B; it is not always true.

The statement n(A U B) = n(A)+n(B) means that the number of elements in A U B is equal to the sum of the number of elements in A and the number of elements in B.

The statement would be true for A = { c, f } and B = { a, g, h} because A U B would be { a, c, f, g, h} so n(A U B) = 5, and n(A) + n(B) = 2 + 3 = 5.

The statement would not be true for A = { c, f, g } and B = { a, g, h} because A U B would be the same as before so n(AUB) = 5, while n(A) + n(B) = 3 + 3 = 6.

The precise condition for which the statement is true is that A and B have nothing in common. In that case n(A U B) = n(A) + n(B). A more precise mathematical way to state this is to say that n(A U B) = n(A) + n(B) if and only if the intersection A ^ B of the two sets is empty. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `qQuery 2.3.60 X = {1,3,5}, Y = {1,2,3}. Find (X ^ Y)' and X' U Y'.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X equals{1, 3, 5} and Y equals {1, 2, 3}so the intersection would equal {1, 3,} so (X ^ Y)’ = {2, 4, 5}. X’ equals {2, 4} and Y’ equals {4, 5} so X’ U Y’ = {2, 4, 5}.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** X ^ Y = {1,3} so (X ^ Y) ' = {1,3}' = {2, 4, 5}.

(X ' U Y ' ) = {2, 4} U {4, 5} = {2, 4, 5}

The two resulting sets are equal so a reasonable conjecture would be that (X ^ Y)' = X' U Y'. **

STUDENT QUESTION:

Where did the 4 come from?

INSTRUCTOR RESPONSE:

I believe this problem, as stated in the text, indicates that the universal set is {1, 2, 3, 4, 5}.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `q2.3.72 A = {3,6,9,12}, B = {6,8}. What is A X B and what is n(A X B)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A X B would Equal {(3,6) (3,8) (6,6) (6,8) (9,6) (9,8) (12,6) (12,8)} and B X A would equal {(6, 3) (6, 6) (6, 9)(6, 12)(8, 3)(8, 6)(8, 9)(8, 12)}.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** (A X B) = {(3,6),(3,8),(6,6),(6,8),(9,6),(9,8),(12,6), (12,8)}

(B X A) = (6,3),(6,6),(6,9),(6,12),(8,3),(8,6),(8,9),(8,12)}

How is n(A x B) related to n(A) and n(B)?

n(S) stands for the number of elements in the set S, i.e., its cardinality.

n(A x B) = n(A) * n(B) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `q2.3.84 Shade A U B

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The A circle and B circle would be shaded, including the intersect, but the outside area would not be.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** everything in A and everything in B would be shaded. The rest of the universal set (the region outside A and B but still in the rectangle) wouldn't be. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `qQuery 2.3.100 Shade (A' ^ B) ^ C

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The area were the B and C circle intersect is shaded except for the part were the A circle overlaps.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** you would have to shade every region that lies outside of A and also inside B and also inside C. This would be the single region in the overlap of B and C but not including any part of A. Another way to put it: the region common to B and C, but not including any of A **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `qQuery 2.3.108. Describe the shading of the set (A ^ B)' U C.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Every were would be shaded except for the intersection between A and B, all of C would be shaded, even were it intersects into A and B.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** All of C would be shaded because we have a union with C, which will include all of C.

Every region outside A ^ B would also be shaded. A ^ B is the 'overlap' region where A and B meet, and only this 'overlap' would not be part of (A ^ B) '. The 'large' parts of A and B, as well as everything outside of A and B, would therefore be shaded.

Combining this with the shading of C the only the part of the diagram not shaded would be that part of the 'overlap' of A and B which is not part of C. **

STUDENT QUESTION

I think I understand because the ‘ was outside the ( ) then only the answer to A^B would be prime. And so my answer is

wrong to the extent that the larger regions of A &B would also be shaded, but had it been (AUB)’ no part of either A or B

would have been Shaded?

INSTRUCTOR RESPONSE

Exactly. Very good question, which you answered very well.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `q2.3.114 Largest area of A shaded (sets A,B,C). Write a description using A, B, C, subset, union, intersection symbols, ', - for the shaded region.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If you start with B’ intersected with C’ you would end up with none of B shaded and none of C shaded, while only the largest part of A and the area outside the circles would be shaded. If you added the intersection of A to B’ ^ C’, the area outside of the circles would no longer be shaded which would leave you only the largest part of A shaded, so it would be A^(B’ ^ C’).

confidence rating #$&*: OK

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** Student Answer and Instructor Response:

(B'^C')^A

Instructor Response:

Good. Another alternative would be A - (B U C ), and others are mentioned below.

COMMON ERROR: A ^ (B' U C')

INSTRUCTOR COMMENT: This is close but A ^ (B' U C') would contain all of B ^ C, including a part that's not shaded. A ^ (B U C)' would be one correct answer. **

"

end document

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q2.3.114 Largest area of A shaded (sets A,B,C). Write a description using A, B, C, subset, union, intersection symbols, ', - for the shaded region.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If you start with B’ intersected with C’ you would end up with none of B shaded and none of C shaded, while only the largest part of A and the area outside the circles would be shaded. If you added the intersection of A to B’ ^ C’, the area outside of the circles would no longer be shaded which would leave you only the largest part of A shaded, so it would be A^(B’ ^ C’).

confidence rating #$&*: OK

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** Student Answer and Instructor Response:

(B'^C')^A

Instructor Response:

Good. Another alternative would be A - (B U C ), and others are mentioned below.

COMMON ERROR: A ^ (B' U C')

INSTRUCTOR COMMENT: This is close but A ^ (B' U C') would contain all of B ^ C, including a part that's not shaded. A ^ (B U C)' would be one correct answer. **

"

end document

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

*********************************************

Question: `q2.3.114 Largest area of A shaded (sets A,B,C). Write a description using A, B, C, subset, union, intersection symbols, ', - for the shaded region.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If you start with B’ intersected with C’ you would end up with none of B shaded and none of C shaded, while only the largest part of A and the area outside the circles would be shaded. If you added the intersection of A to B’ ^ C’, the area outside of the circles would no longer be shaded which would leave you only the largest part of A shaded, so it would be A^(B’ ^ C’).

confidence rating #$&*: OK

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** Student Answer and Instructor Response:

(B'^C')^A

Instructor Response:

Good. Another alternative would be A - (B U C ), and others are mentioned below.

COMMON ERROR: A ^ (B' U C')

INSTRUCTOR COMMENT: This is close but A ^ (B' U C') would contain all of B ^ C, including a part that's not shaded. A ^ (B U C)' would be one correct answer. **

"

end document

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

&#This looks very good. Let me know if you have any questions. &#