#$&* course Mth 151 1/25/12 3:40PM 005. Infinite Sets
.............................................
Given Solution: This correspondence can be written [ 1 <--> 1, 2 <--> 3, 3 <--> 5, ... ]. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `q002. Writing [ 1 <--> 1, 2 <--> 3, 3 <--> 5, ... ] for the correspondence between { 1, 2, 3, ... } and { 1, 3, 5, ... } isn't bad, but the pattern here might be a bit less clear to the reader than the correspondence [ 1 <--> 2, 2 <--> 4, 3 <--> 6, ... ] given for { 1, 2, 3, ... } and { 2, 4, 6, ... }. That is because in the latter case it is clear that we are simply doubling the numbers in the first set to get the numbers in the second. It might not be quite as clear exactly what the rule is in the correspondence [ 1 <--> 1, 2 <--> 3, 3 <--> 5, ... ], except that we know we are pairing the numbers in the two sets in order. Without explicitly stating the rule in a form as clear as the doubling rule, we can't be quite as sure that our rule really works. How might we state the rule for the correspondence [ 1 <--> 1, 2 <--> 3, 3 <--> 5, ... ] as clearly as the 'double-the-first-number' rule for [ 1 <--> 2, 2 <--> 4, 3 <--> 6, ... ]? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The rule for [ 1 <--> 1, 2 <--> 3, 3 <--> 5, ... ] could be to use the next odd number. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: We might say something like 'choose the next odd number'. That wouldn't be too bad. Even clearer would be to note that the numbers 1, 3, 5, ... are each 1 less than the 'double-the-counting-number' numbers 2, 4, 6. So our rule could be the 'double-the-first-number-and-subtract-1' rule. If we double each of the numbers 1, 2, 3, ... and subtract 1, we get 1, 3, 5, ... . &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `q003. The 'double-the-number' rule for the correspondence [ 1 <--> 2, 2 <--> 4, 3 <--> 6, ... ] could be made even clearer. First we we let n stand for the nth number of the set {1, 2, 3, ... }, like 10 stands for the 10th number, 187 stands for the 187th number, so whatever it is and long as n is a counting number, n stands for the nth counting number. Then we note that the correspondence always associates n with 2n, so the correspondence could be written0 [ 1 <--> 2, 2 <--> 4, 3 <--> 6, ... , n <--> 2n, ... ]. This tells us that whatever counting number n we choose, we will associate it with its double 2n. Since we know that any even number is a double of the counting number, of the form 2n, this rule also tells us what each even number is associated with. So we can argue very specifically that this rule is indeed a 1-to-1 correspondence. In terms of n, how would we write the rule for the correspondence [ 1 <--> 1, 2 <--> 3, 3 <--> 5, ... ]? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The rule of correspondence is to double then subtract 1, so it terms of n it would be 2n-1. [1 <--> 1, 2 <--> 3, 3 <--> 5, ..., n <--> 2n-1, …] confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The rule for this correspondence is 'double and subtract 1', so n would be associated with 2n - 1. The correspondence would thus be [ 1 <--> 1, 2 <--> 3, 3 <--> 5, ... , n <--> 2n-1, ... ]. Note how this gives a definite formula for the rule, removing all ambiguity. No doubt is left as to how to figure which number goes with which. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `q004. Write an unambiguous rule involving n for the correspondence between { 1, 2, 3, ... } and { 5, 10, 15, ... }. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The correspondence rule for [1 <--> 1, 5 <--> 2, 10 <--> 3, …] would be multiply by 5, so in terms of n it would be 5n. [1 <--> 1, 5 <--> 2, 10 <--> 3, …, n <--> 5n, …] confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: It should be clear that each element of the second set is 5 times as great as the corresponding element the first set. The rule would therefore be n <--> 5n. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `q005. Write an unambiguous rule involving n for the correspondence between { 1, 2, 3, ... } and { 7, 12, 17, ... }. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The correspondence rule would be multiply by 5 then add 2, in terms of n it would be 5n + 2. [1 <--> 1, 7 <--> 2, 12 <--> 3, …, n<--> 5n+2, …] confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: First we note that the numbers in the second set are going up by 5 each time. This indicates that we will probably somehow have to use 5n in our formula. Just plain 5n gives us 5, 10, 15, ... . It's easy to see that these numbers are each 2 less than the numbers 7, 12, 17, ... . So if we add 2 to 5n we get the numbers we want. Thus the rule is n <--> 5n+2, or in a bit more detail [ 1 <--> 7, 2 <--> 12, 3 <--> 17, ..., n <--> 5n+2, ... ]. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK " end document Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q005. Write an unambiguous rule involving n for the correspondence between { 1, 2, 3, ... } and { 7, 12, 17, ... }. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The correspondence rule would be multiply by 5 then add 2, in terms of n it would be 5n + 2. [1 <--> 1, 7 <--> 2, 12 <--> 3, …, n<--> 5n+2, …] confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: First we note that the numbers in the second set are going up by 5 each time. This indicates that we will probably somehow have to use 5n in our formula. Just plain 5n gives us 5, 10, 15, ... . It's easy to see that these numbers are each 2 less than the numbers 7, 12, 17, ... . So if we add 2 to 5n we get the numbers we want. Thus the rule is n <--> 5n+2, or in a bit more detail [ 1 <--> 7, 2 <--> 12, 3 <--> 17, ..., n <--> 5n+2, ... ]. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK " end document Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!