math14open

#$&*

course Mth 151

2/19/2012 4:13PM

011.  `Query 11

 

 

*********************************************

Question:  `qQuery  (previously 1.4.24)  1 raised to to any power is what?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

1 raised to any power will still be 1 because 1 times it self is always 1, no matter how many times you do it.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a** The meaning is 1^2, 1^3, 1^4.  We take a power of the base. 

 

The result is always 1. **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `qQuery  (previously 1.4.30)  What can you say about the square root of a negative number?

What can you say about the square of a negative number?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

You can not have the square root of a negative number because any number, negative or positive, multiplied by itself will be a positive number. The square of a negative number will be a positive number because two of the same negative numbers multiplied by each other will be a positive.

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a** The square root of a negative will often give you an error (what can you square to get a negative, since any number squared is positive?), but on certain calculators it gives a complex number (actually two complex numbers).  These are not real numbers; for the purposes of this course there is no real square root of a negative number.

 

There is no real number that can be squared to give a negative.  If you square a negative number you get a negative times a negative, which is positive.  If you square a positive number you get a positive number.  So a negative number has no real square root. **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 

------------------------------------------------

Self-critique Rating:

*********************************************

Question:  `qQuery  1.4.38 (previously 1.4.42)  drawer has 18 compartments; how many drawers to hold 204 tapes?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

I divided 204 by 18 to see how many drawers I would need, which equaled 11.3. But since you can't have .3 of a drawer I rounded up to 12 to fit the remaining tapes.

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a** 204 / 18 = 11 with remainder 6.  If we had 11 drawers they would hold all but 6 of the tapes.

 

The leftover tapes also have to go into a drawer, so we need a 12th drawer. **

"

end document

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question:  `qQuery  1.4.38 (previously 1.4.42)  drawer has 18 compartments; how many drawers to hold 204 tapes?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

I divided 204 by 18 to see how many drawers I would need, which equaled 11.3. But since you can't have .3 of a drawer I rounded up to 12 to fit the remaining tapes.

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a** 204 / 18 = 11 with remainder 6.  If we had 11 drawers they would hold all but 6 of the tapes.

 

The leftover tapes also have to go into a drawer, so we need a 12th drawer. **

"

end document

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks good. Let me know if you have any questions. &#