math33open

#$&*

course Mth 151

2/29/12 5:32PM

014.  `query 14 

 

*********************************************

Question:  `q3.3.5 rewrite using if then ' all marines love boot camp '.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

If he or she is a marine, then he or she loves boot camp.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a** The statement is equivalent to 'If it's a Marine, it loves boot camp' or equivalent. 

 

The statement is not equivalent to 'if it is boot camp, then all Marines love it', which is the converse of the original statement.  **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating:

*********************************************

Question:  `q3.3.18 ~p false q false p -> q true

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

In the conditional p is true because ~p is false and q is false because q is false. So the conditional is false because “if” part is true and the “then” part is false.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a** Since ~p is false then p is true. 

 

Since q is false it follows that p -> q is of the form T -> F, which is false.  

 

The conditional is false when, and only when, the antecedent is true and the consequent false. **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `qQuery   3.3.36 write in symbols 'If we don't bike, then it does not rain.'

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

since b = “I don't ride my bike” and q = “it rains”, in symbol form it would be b → ~q

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a** If p stands for 'don't bike' and r for 'it rains' then the statement would be p -> ~r.  **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `qQuery   3.3.48 q true, p and r false, evaluate (-r U p) -> p

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

in ~r U p, ~r is true and p false, so ~r U p would be true. P is false, so the conditional is false because antecedent is true and the consequent is false.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a** The antecedent (~r U p ) would be true, since ~r true and p false.

 

The consequent p would be false.

 

Since the antecedent is true and the consequent false, the conditional is false. **

 

MORE DETAILED SOLUTION

 

r is said to be false, so ~r is true

p is said to be false

Therefore the disjunction (~r U p) would be a disjunction of a true and a false statement.

A disjunction is true if at least one of the statements is true, so (~r U p) is true.

The conditional (~r U p) -> p therefore consists of an antecedent which is true, and a consequent which is false.

By the rules for a conditional, the statement is therefore false.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `qQuery   3.3.60 truth table for (p ^ q) -> (p U q)

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

p q p^q pUq (p^q)->(pUq)

T T T T T

T F F T T

F T F T T

F F F F T

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a** The headings would be p, q ,(p^q), (pUq),  (p^q)->(pUq)

 

Row 1 would read T T T T T

Row 2 would read T F F T T

Row 3 would read F T F T T

Row 4 would read F F F F T

 

The common sense of this is that whenever both p and q are true, then the statement 'p or q' must be true.  That's what means to say (p ^ q) -> (p U q).

 

The fact that this statement is true is indicated by the last column of the truth table, which has True in every possible case. **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `qQuery   3.3.74 (formerly 3.3.72).  This wasn't assigned but it is similar to assigned questions and should be answered:  What is the negation of  the statement 'if loving you is wrong then I don't want to be right' ?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

First I converted conditional to disjunction. Then I negated it to get “Loving you is wrong and I want to be right.

 

 

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a** The negation has to have the exact opposite truth values of the original statement. 

 

It is difficult and confusing to try to negate a conditional.  It is much easier to translate the conditional to a disjunction then negate the disjunction.  It is easy to negate the disjunction using deMorgan's Laws.

 

Since p -> q is identical to ~p U q, the negation of p -> q is ~ ( ~p U q), which by de Morgan's Law is ~ ~p ^ ~q, or just p ^ ~q. 

 

So the negation would ge 'loving you is wrong AND I want to be right.

 

COMMON ERROR AND NOTE: If loving you is wrong, then I want to be right.

 

INSTRUCTOR COMMENT: 

 

The negation of a conditional can't be a conditional (a conditional is false in only one case so its negation would have to be false in three cases).  **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

"

end document

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

end document

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Very good responses. Let me know if you have questions. &#