#$&* course MTH 163 Things are looking up...Oct. 27, @ 5:19 PM
.............................................
Given Solution: ** For the function y = .1 x^2 - 3 between x = -2 and x = 7 we get: slope = (y2 - y1) / (x2 - x1). For x1 = 2 and x2 = 7 we have y2 = .1 * 7^2 - 3 = 1.9 and y1 = .1 * 2^2 - 3 = -2.6, so slope = (1.9 - (-2.6) ) / ( 7 - (-2) ) = 4.5 / 9 = 1/2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qproblem 2 symbolic expression for slope, fn depth(t). What is the expression for the slope between the two specified t values? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: - For x= 10, y = 7. For x = 30, y = 87, giving coordinates of (10, 7) and (30, 87). I got slope of 80/20, coming to 40. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The function is given a name: depth(t). t values are 10 and 30. So rise = depth(30) - depth(10) and run = 30 - 10 = 20. Thus slope = [ depth(30) - depth(10) ] / 20 . ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I had actually used the function y = f(x) = 0.1x^2 + 3 ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat is the rise between the two specified t values? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: - 87-7 (or otherwise the change in depth between depth(30) and depth(10) = 80 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The rise is the change in depth. The two depths are depth(10) and depth(30). The change in depth is final depth - initial depth, which gives us the expression depth(30)-depth(10) ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat is the run between the two specified t values? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: - 20. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** run = 30 - 10 = 20 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat therefore is the slope and what does it mean? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: - My answer was 40, but to reiterate this is from using the function f(x) = 0.1x^2 + 3. Either way, it is the change of depth between depth(30) and depth(10), over the change in time 30 - 10, or 20. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** rise = depth(30)-(depth(10) indicates change in depth. run = 30 - 10 = 20 = change in clock time. Slope = rise / run = (depth(30) - depth(10) ) / 20, which is the average rate at which depth changes with respect to clock time between t = 10 and t = 30. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q problem 5 graph points corresponding to load1 and load2 What are the coordinates of the requested graph points? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: - My slope for this problem concluded to be 1.3, working from: - (3, -2.1) and (10, 7) for my coordinates. The rise was the change between the two y’s, which is 9.1, and the run was 7; therefore slope = 9.1 / 7, or 1.3. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The horizontal axis is the 'load' asix, the vertical axis is the springLength axis. The load axis coordinates are load1 and load2. The corresponding spring lengths are springLength(load1) and springLength(load2). The springLength axis coordinates are springLength(load1) and springLength(load2). The graph points are thereofore (load1, springLength(load1) ) and (load2, springLength(load2) ). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Could you elaborate on this solution, without the values that I went through? I was working under the assumption to continue using the aforementioned function, f(x) = 0.1x^2 + 3. The parentheses are giving me a headache. ------------------------------------------------ Self-critique Rating:
.............................................
Given Solution: ** rise = springLength(load2) - springLength(load1) run = load2 - load1 so slope = [ springLength(load2) - springLength(load1)] / (load2 - load1). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating:
.............................................
Given Solution: ** the name of the function is depth(t). We need the slope between t = t1 and t = t2. The depths are depth(t1) and depth(t2). Thus rise is depth(t2) - depth(t1) and run is t2 - t1. Slope is [ depth(t2) - depth(t1) ] / (t2 - t1). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q problem 8 average rate from formula f(t) = 40 (2^(-.3 t) ) + 25 intervals of partition (10,20,30,40) What average rate do you get from the formula? Show your steps. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I could loosely follow your solution, but I need a bit of extra clarity in order to solidify my understanding. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** ave rate = change in depth / change in t. For the three intervals we get (f(20)-f(10))/(20-10) = (25.625 - 30 )/(20 - 10) = -4.375 / 10 = -.4375 (f(30)-f(20))/(30-20) = (25.07813 - 25.625)/(30 - 20) = -.5469 / 10 = -.05469. (f(40)-f(30))/(40-30) = (25.00977 - 25.07813)/(40 - 30) = -.0684 / 10 = -.00684. ** Add comments on any surprises or insights you experienced as a result of this assignment. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: - The manner in which the graphs are shown, without designated points KIND OF make sense, but they aren’t crystal clear yet. I can connect the idea of what I think it means, but so far it’s proven to be a bit confusing.
.............................................
Given Solution: STUDENT RESPONSE: Ummm I know the slope formula is (y2-y1)/(x2-x1), but I always just put the number into the expression in the order I see them, but that is ok because I keep the order and get the correct answere because the y2,y1,x2,x1 or all relative. I am correct in doing this? INSTRUCTOR COMMENT: In other words you use (y1 - y2) / (x1 - x2) instead of (y2 - y1) / (x2 - x1). It's more conventional to regard, say, 10 as x1 and 20 as x2, so f(20) is y2 and f(10) is y1. If you start from the lower x number and change to the higher the difference is higher - lower, and this is the way we usually think about changes. According to this convention we calculate change in y as y2 - y1 and change in x as x2 - x1. You are doing (y1 - y2) / (x1 - x2) and you get a negative change in x, a negative denominator, and if you are thinking about change from the first quantity to the second this is backwards. However as you say both numerator and denominator follow the same order so you still get the right answer, since (y1-y2)/(x1-x2)= (y2-y1) / (x2-x1). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: "" " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: "" " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!