Assignment 15

#$&*

course Mth 272

7/4 2:16 pm

015.

*********************************************

Question: `qQuery problem 6.1.6 (was 6.2.2) integrate x e^(-x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

uv - int(v du)

u = x

dv = e^(-x) dx

v = -e^(-x)

x(-e^(-x)) - int(-e^(-x))

-e^(-x) = e^(-x)

x(-e^(-x)) - e^(-x)

e^(-x)(-x - 1) + c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a We let

u = x

du = dx

dv = e^(-x)dx

v = -e^(-x)

Using u v - int(v du):

(x)(-e^(-x)) - int(-e^(-x)) dx

Integrate:

x(-e^(-x)) - (e^(-x)) + C

Factor out e^(-x):

e^(-x) (-x-1) + C.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `qQuery problem 6.1.7 (was 6.2.3) integrate x^2 e^(-x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

u = x^2

dv = e^(-x) dx

v = -e^(-x)

-x^2 e^(-x) - int(-e^(-x) * 2x dx) which equals 2 int(xe^(-x) dx)

u = x

dv = e^(-x) dx

v = -e^(-x)

-xe^(-x) - e^(-x) + c so

-x^2 e^(-x) + 2(-xe^(-x) - e^(-x) + c) which simplifies to

-e^(-x)(x^2 + 2x + 2) + c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a We perform two integrations by parts.

First we use

u=x^2

dv=e^-x)dx

v= -e^(-x)

to obtain

-x^(2)e^(-x) - int [ -e^(-x) * 2x dx] =-x^(2)e^(-x) +2int[xe^(-x) dx]

We then integrate x e^-x dx:

u=x

dv=e^(-x)dx

v= -e^(-x)

from which we obtain

-x e^(-x) - int(-e^(-x) dx) = -x e^(-x) - e^(-x) + C

Substituting this back into

-x^(2)e^(-x) +2int[xe^(-x) dx] we obtain

-x^(2)e^(-x) + 2 ( -x e^-x - e^-x + C) =

-e^(-x) * [x^(2) + 2x +2] + C.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:

OK

*********************************************

Question: `qQuery problem 6.1.26 (was 6.2.18) integral of 1 / (x (ln(x))^3)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

u = ln(x)

du = 1/x dx

1/u^3 du

int(1/u^3 du) = -1/(2u^2) + c

-1/(2 ln(x)) + c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Let u = ln(x) so that du = 1 / x dx. This gives you 1 / u^3 * du and the rest is straightforward:

1/u^3 is a power function so

int(1 / u^3 du) = -1 / (2 u^2) + c.

Substituting u = ln(x) we have

-1 / (2 ln(x)^2) + c.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `qQuery problem 6.1.46 (was 6.2.32) (was 6.2.34) integral of ln(1+2x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

u = ln(1 + 2x)

du = 2 / (1 + 2x) dx

dv = dx

v = x

x(ln(1 + 2x)) - int (x(2/(1 + 2x))) which equals 2 int (x/(1 + 2x))

w = (1 + 2x)

dw = 2 dx

dx = dw / 2

x = (w - 1) / 2

(((w -1) / 2) / w) dw / 2 = (.25 -1/(4w)) dw

w/4 - .25 ln(w) = 2x / 4 - .25 ln(1 + 2x) so

x(ln(1 + 2x)) - 2(2x / 4 - .25 ln(1 + 2x) = x(ln(1 + 2x)) + ln(1 + 2x) / 2 - x

f(1) - f(0) = .6479 - 0 = .6479

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Let

u = ln ( 1 + 2x)

du = 2 / (1 + 2x) dx

dv = dx

v = x.

You get

u v - int(v du) = x ln(1+2x) - int( x * 2 / (1+2x) ) =

x ln(1+2x) - 2 int( x / (1+2x) ).

The integral is done by substituting w = 1 + 2x, so dw = 2 dx and dx = dw/2, and x = (w-1)/2.

Thus x / (1+2x) dx becomes { [ (w-1)/2 ] / w } dw/2 = { 1/4 - 1/(4w) } dw.

Antiderivative is w/4 - 1/4 ln(w), which becomes (2x) / 4 - 1/4 ln(1+2x).

So x ln(1+2x) - 2 int( x / (1+2x) ) becomes x ln(1+2x) - 2 [ (2x) / 4 - 1/4 ln(1+2x) ] or

x ln(1+2x) + ln(1+2x)/2 - x.

Integrating from x = 0 to x = 1 we obtain the result .648 approx.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I noticed a pattern of exponential antiderivatives where it keeps its exponent while transferring a coefficient or sign at the same time (e.g e^(-x) = -e^(-x)). That will prove useful later I think.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I noticed a pattern of exponential antiderivatives where it keeps its exponent while transferring a coefficient or sign at the same time (e.g e^(-x) = -e^(-x)). That will prove useful later I think.

@& Good. Be sure you understand how this pattern follows from the chain rule.*@

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good responses. See my notes and let me know if you have questions. &#