Asst5 rand prob

#$&*

course phy 201

4/3 130pm

Solving Uniform Acceleration ProblemsPossible Combinations of Variables         Direct Reasoning

Using Equations                                         Problem

Possible Combinations of Variables

There are ten possible combinations of three of the the five variables v0, vf, a, Dt and Ds.  These ten combinations are summarized in the table below:

1

v0

vf

a

2

v0

vf

dt

3

v0

vf

ds

4

v0

a

dt

5

v0

a

ds

*

6

v0

dt

ds

7

vf

a

dt

8

vf

a

ds

*

9

vf

dt

ds

10

a

dt

ds

If we know the three variables we can easily solve for the other two, using either direct reasoning or the equations of uniformly accelerated motion (the definitions of average velocity and acceleration, and the two equations derived from these by eliminating Dt and then eliminating vf). 

Only two of these situations require equations for their solution; the rest can be solved by direct reasoning using the seven quantities v0, vf, a, Dt, Ds, Dv and vAve.  These two situations, numbers 5 and 8 on the table, are indicated by the asterisks in the last column.

Direct Reasoning

We learn more physics by reasoning directly than by using equations.  In direct reasoning we think about the meaning of each calculation and visualize each calculation.

When reasoning directly using v0, vf, `dv, vAve, `ds, `dt and a we use two known variables at a time to determine the value of an unknown variable, which then becomes known.  Each step should be accompanied by visualization of the meaning of the calculation and by thinking of the meaning of the calculation.  A 'flow diagram' is helpful here.

Using Equations

When using equations, we need to find the equation that contains the three known variables. 

• We solve that equation for the remaining, unknown, variable in that equation.  

• We obtain the value of the unknown variable by plugging in the values of the three known variables and simplifying. 

• At this point we know the values of four of the five variables. 

• Then any equation containing the fifth variable can be solved for this variable, and the values of the remaining variables plugged in to obtain the value of this final variable.

Problem

Do the following: 

• Make up a problem for situation # 1, and solve it using direct reasoning.  

• Accompany your solution with an explanation of the meaning of each step and with a flow diagram. 

• Then solve the same problem using the equations of uniformly accelerated motion.

• Make up a problem for situation # 8, and solve it using the equations of uniformly accelerated motion.

#1

If v0=10m/s, vf=20m/s and a=2m/s^2 solve for dt and ds.

find dv

vf-v0=dv=20m/s-10m/s=10m/s

using dv find dt

dv/a=dt=10m/s/2m/s^2=5s

find vAve

v0+v0/2=vAve=10m/s+20m/s30m/s/2=15m/s

using vAve find ds

vAve+dt=ds=15m/s*5s=75m

vf=v0+a*dt

rearrange to solve for dt

dt=(vf-v0)/a=(20m/s-10m/s)2m/s^2=5s

using dt solve for ds

ds=(v0+vf)/2*dt=(10m/s+20m/s)/2*5s=75m

#8

If vf=30m/s, a=5m/s^2, ds=60m find v0 and dt

vf=v0+a*dt

30m/s=v0+5m/s^2*dt

For an unknown variable on each side

30m/s-5m/s^2*dt=v0

&#This looks good. Let me know if you have any questions. &#