#$&* course Phy 121 Question: `q001. Note that there are 14 questions in this assignment.
.............................................
Given Solution: Moving 12 meters in 4 seconds, we move an average of 3 meters every second. We can imagine dividing up the 12 meters into four equal parts, one for each second. Each part will span 3 meters, corresponding to the distance moved in 1 second, on the average. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I didn’t do very good at describing the idea behind the answer. ------------------------------------------------ Self-critique rating:2
.............................................
Given Solution: A rate is obtained by dividing the change in a quantity by the change in another quantity on which is dependent. In this case we divided the change in position by the time during which that change occurred. More specifically The rate of change of A with respect to B is defined to be the quantity (change in A) / (change in B). An object which moves 12 meters in 3 seconds changes its position by 12 meter during a change in clock time of 3 seconds. So the question implies Change in position = 12 meters Change in clock time = 3 seconds When we divide the 12 meters by the 3 seconds we are therefore dividing (change in position) by (change in clock time). In terms of the definition of rate of change: the change in position is the change in A, so position is the A quantity. the change in clock time is the change in B, so clock time is the B quantity. So (12 meters) / (3 seconds) is (change in position) / (change in clock time) which is the same as average rate of change of position with respect to clock time. Thus average velocity is average rate of change of position with respect to clock time. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I didn’t go into nearly as much detail as the given solution, but I understand all of what was said there. ------------------------------------------------ Self-critique rating:2 ********************************************* Question: `q003. We are still referring to the situation of the preceding questions: Is object position dependent on time or is time dependent on object position? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The position of the object depends on the time. The time will continue to change even if the object doesn’t move at all. confidence rating #$&*:32; 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Object position is dependent on time--the clock runs whether the object is moving or not so time is independent of position. Clock time is pretty much independent of anything else (this might not be so at the most fundamental level, but for the moment, unless you have good reason to do otherwise, this should be your convention). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I think I hit the nail right on the head. ------------------------------------------------ Self-critique rating:2 ********************************************* Question: `q004. We are still referring to the situation of the preceding questions: So the rate here is the average rate at which position is changing with respect to clock time. Explain what concepts, if any, you missed in your explanations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I failed to explicitly say that this an average rate. The object could sit still for half the time, have a large force applied to it, and move the 12 meters in just 2 seconds. In other words, it doesn’t necessarily have to move 3 m/s over the whole time to get the average of 3 m/s. confidence rating #$&*:32; 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Be sure you have reviewed all the definitions and concepts associated with velocity. If there’s anything you don’t understand, be sure to address it in your self-critique. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q005. If an object is displaced -6 meters in three seconds, then what is the average speed of the object what is its average velocity? Explain how you obtained your result in terms of commonsense images and ideas. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: -6 meters / 3 seconds = -2 meters/second. Again, this is an average. If we divide the 6 meters up into 3 equal parts, each part will have 2 meters in it. confidence rating #$&*:32; 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Speed is the average rate at which distance changes with respect to clock time. Distance cannot be negative and the clock runs forward. Therefore speed cannot be negative. Velocity is the average rate at which position changes with respect to clock time, and since position changes can be positive or negative, so can velocity. In general distance has no direction, while velocity does have direction. Putting it loosely, speed is just how fast something is moving; velocity is how fast and in what direction. In this case, the average velocity is vAve = `ds / `dt = -6 m / (3 s) = -2 m/s. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): The difference between speed and velocity was something I had some concept of, but failed to consider in this example. ------------------------------------------------ Self-critique rating:2 ********************************************* Question: `q006. If `ds stands for the change in the position of an object and `dt for the time interval during which its position changes, then what expression stands for the average velocity vAve of the object during this time interval? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The expression ds/dt would show the relationship between position and time. confidence rating #$&*:32; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Average velocity is rate of change of position with respect to clock time. Change in position is `ds and change in clock time is `dt, so average velocity is expressed in symbols as vAve = `ds / `dt. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok. ------------------------------------------------ Self-critique rating:2 ********************************************* Question: `q007. How do you write the expressions `ds and `dt on your paper? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: In this case, ‘d’ is standing in for a capital ‘delta’. confidence rating #$&*:32; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: You use the Greek capital Delta when writing on paper or when communicating outside the context of this course; this is the symbol that looks like a triangle. See Introductory Problem Set 1. `d is used for typewritten communication because the symbol for Delta is not interpreted correctly by some Internet forms and text editors. You should get in the habit of thinking and writing the Delta symbol when you see `d. You may use either `d or Delta when submitting work and answering questions. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok. ------------------------------------------------ Self-critique rating:3 ********************************************* Question: `q008. If an object changes position at an average rate of 5 meters/second for 10 seconds, then how far does it move? How is this problem related to the concept of a rate? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 5 meters/second * 10 seconds = 50 meters. This is a rate, but working in the opposite direction, since we already have a rate given in the problem and are using it to find information, not vice versa. confidence rating #$&*:32; 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: In this problem you are given the rate at which position changes with respect to time, and you are given the time interval during which to calculate the change in position. The definition of rate of change states that the rate of change of A with respect to B is (change in A) / (change in B), which we abbreviate as `dA / `dB. `dA stands for the change in the A quantity and `dB for the change in the B quantity. For the present problem we are given the rate at which position changes with respect to clock time. The definition of rate of change is stated in terms of the rate of change of A with respect to B. So we identify the position as the A quantity, clock time as the B quantity. The basic relationship ave rate = `dA / `dB can be algebraically rearranged in either of two ways: `dA = ave rate * `dB or `dB = `dA / (ave rate) Using position for A and clock time for B the above relationships are ave rate of change of position with respect to clock time = change in position / change in clock time change in position = ave rate * change in clock time change in clock time = change in position / ave rate. In the present situation we are given the average rate of change of position with respect to clock time, which is 5 meters / second, and the change in clock time, which is 10 seconds. Thus we find change in position = ave rate * change in clock time = 5 cm/sec * 10 sec = 50 cm. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ###Unimportant information here, but you changed units from meters to centimeters in the last step here. Just thought you should know ☺## ------------------------------------------------ Self-critique rating: ********************************************* Question: `q009. If vAve stands for the rate at which the position of the object changes with respect to clock time (also called velocity) and `dt for the time interval during which the change in position is to be calculated, then how to we write the expression for the change `ds in the position? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Some simple algebra can show us that is vAve=ds/dt, then ds=vAve*dt. confidence rating #$&*:32; 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: To find the change in a quantity we multiply the rate by the time interval during which the change occurs. The velocity is the rate, so we obtain the change in position by multiplying the velocity by the time interval: `ds = vAve * `dt. The units of this calculation pretty much tell us what to do: We know what it means to multiply pay rate by time interval (dollar / hr * hours of work) or automobile velocity by the time interval (miles / hour * hour). When we multiply vAve, for example in in units of cm / sec or meters / sec, by `dt in seconds, we get displacement in cm or meters. Similar reasoning applies if we use different measures of distance. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q010. Explain how the quantities average velocity vAve, time interval `dt and displacement `ds are related by the definition of a rate, and how this relationship can be used to solve the current problem. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Velocity is defined by the expression ds/dt. It is itself a rate. confidence rating #$&*:32; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: vAve is the average rate at which position changes. The change in position is the displacement `ds, the change in clock time is `dt, so vAve = `ds / `dt. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok, I suppose. ------------------------------------------------ Self-critique rating:2 ********************************************* Question: `q011. The basic rate relationship vAve = `ds / `dt expresses the definition of average velocity vAve as the rate at which position s changes with respect to clock time t. What algebraic steps do we use to solve this equation for `ds, and what is our result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To eliminate the dt and isolate the ds, we simply multiply both sides of the equation by dt, giving vAve*dt=ds/dt*dt. Because ds/dt*dt is nothing more than ds, we are left with vAve*dt=ds. confidence rating #$&*:32; 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: To solve vAve = `ds / `dt for `ds, we multiply both sides by `dt. The steps: vAve = `ds / `dt. Multiply both sides by `dt: vAve * `dt = `ds / `dt * `dt Since `dt / `dt = 1 vAve * `dt = `ds . Switching sides we have `ds = vAve * `dt. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I didn’t switch the sides of the equation, but that isn’t necessary, strictly speaking. ------------------------------------------------ Self-critique rating:3 ********************************************* Question: `q012. How is the preceding result related to our intuition about the meanings of the terms average velocity, displacement and clock time? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I’m not sure what you are asking me to do here, but I’ll throw some stuff out there and see what you think. We all have an idea about velocity, but we are mostly used to thinking of it as speed. Everyone understands that traveling in a car on the interstate at a speed of 70 miles an hour for 3 hours will result in being displaced 210 miles. confidence rating #$&*:32; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: For most of us our most direct intuition about velocity probably comes from watching an automobile speedometer. We know that if we multiply our average velocity in mph by the duration `dt of the time interval during which we travel, we get the distance traveled in miles. From this we easily extend the idea. Whenever we multiply our average velocity by the duration of the time interval, we expect to obtain the displacement, or change in position, during that time interval. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok. ------------------------------------------------ Self-critique rating: ********************************************* Question: `q013. What algebraic steps do we use to solve the equation vAve = `ds / `dt for `dt, and what is our result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: First, we need to get ‘dt out of the denominator. This can be accomplished by multiplying both sides by ‘dt, leaving vAve*`dt=’ds/’dt*`dt. Because the ones on the right cancel one another, we have vAve*`dt=`ds. We can then divide by vAve to isolate `dt, giving `dt=`ds/vAve. confidence rating #$&*:32; 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: To solve vAve = `ds / `dt for `dt, we must get `dt out of the denominator. Thus we first multiply both sides by the denominator `dt. Then we can see where we are and takes the appropriate next that. The steps: vAve = `ds / `dt. Multiply both sides by `dt: vAve * `dt = `ds / `dt * `dt Since `dt / `dt = 1 vAve * `dt = `ds. We can now divide both sides by vAve to get `dt = `ds / vAve. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok. ------------------------------------------------ Self-critique rating:2 ********************************************* Question: `q014. How is this result related to our intuition about the meanings of the terms average velocity, displacement and clock time? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I am again not sure what is being asked of me, but I think that what you want is that time a trip will take will equal how far away the destination is divided by how fast we are going. confidence rating #$&*:32; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If we want to know how long it will take to make a trip at a certain speed, we know to divide the distance in miles by the speed in mph. If we divide the number of miles we need to travel by the number of miles we travel in hour, we get the number of hours required. This is equivalent to the calculation `dt = `ds / vAve. We extend this to the general concept of dividing the displacement by the velocity to get the duration of the time interval. When dealing with displacement, velocity and time interval, we can always check our thinking by making the analogy with a simple example involving miles, hours and miles/hour. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok. ------------------------------------------------ Self-critique rating:2 " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!