Query 0

#$&*

course Phy 122

1/14 6pm

ph2 query 0Most queries in this course will ask you questions about class notes, readings, text problems and experiments. Since the first two assignments have been lab-related, the first two queries are related to the those exercises. While the remaining queries in this course are in question-answer format, the first two will be in the form of open-ended questions. Interpret these questions and answer them as best you can.

Different first-semester courses address the issues of experimental precision, experimental error, reporting of results and analysis in different ways and at different levels. One purpose of these initial lab exercises is to familiarize your instructor with your work and you with the instructor 's expectations.

Comment on your experience with the three lab exercises you encountered in this assignment or in recent assignments.

*********************************************

Question: This question, related to the use of the TIMER program in an experimental situation, is posed in terms of a familiar first-semester system.

Suppose you use a computer timer to time a steel ball 1 inch in diameter rolling down a straight wooden incline about 50 cm long. If the computer timer indicates that on five trials the times of an object down an incline are 2.42sec, 2.56 sec, 2.38 sec, 2.47 sec and 2.31 sec, then to what extent do you think the discrepancies could be explained by each of the following:

• The lack of precision of the TIMER program.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Not to a high extent because the TIMER is fairly accurate to hundredths of a second.

#$&*

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I think the discrepancies are majorly explained by human error.

#$&*

• Actual differences in the time required for the object to travel the same distance.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I don’t think that actual differences in the time required for the object to travel the same distance accounts for a lot of the discrepancy.

#$&*

• Differences in positioning the object prior to release.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I think differences in positioning of the object prior to release can account for some of the discrepancy, however, I attribute this discrepant positioning to human error.

#$&*

• Human uncertainty in observing exactly when the object reached the end of the incline.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I think human uncertainty in observing exactly when the object reached the end of the incline also played a role in data discrepancies.

#$&*

*********************************************

Question: How much uncertainty do you think each of the following would actually contribute to the uncertainty in timing a number of trials for the ball-down-an-incline lab?

• The lack of precision of the TIMER program.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I think the TIMER program would play a role in uncertainty in timing the trials, however, again I think it is to a small degree.

#$&*

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I think the uncertainty in human triggering plays a small role in the uncertainty in timing, but that uncertainty in when the ball reaches the end of the incline more so than the triggering itself.

#$&*

• Actual differences in the time required for the object to travel the same distance.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I think this factor would be only a small factor to contribute to the uncertainty.

#$&*

• Differences in positioning the object prior to release.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I think that differences in positioning contributes to the uncertainty in timing because different placement would yield different results.

#$&*

• Human uncertainty in observing exactly when the object reached the end of the incline.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I think human uncertainty in observation would play a large role in contributing to the uncertainty in timing results.

#$&*

*********************************************

Question: What, if anything, could you do about the uncertainty due to each of the following? Address each specifically.

• The lack of precision of the TIMER program.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Use a different program with more precision.

#$&*

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Rig up a system of some sort that times the exact moment the ball reaches the end of the incline. For example a laser at the end of the incline that sends a signal to a computer to record time as soon as the ball intersects the beam.

#$&*

• Actual differences in the time required for the object to travel the same distance.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Not much.

#$&*

• Differences in positioning the object prior to release.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Another system could be rigged so that the ball is released from the same position each time. For example, a lever door that would hold the ball in the same position until released.

#$&*

• Human uncertainty in observing exactly when the object reached the end of the incline.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

See above timer recording answer concerning laser beam.

#$&*

&#Very good work on this lab exercise. Let me know if you have questions. &#