course Phy 201 ??w????????assignment #020
......!!!!!!!!...................................
22:12:45 Explain how we get the components of the resultant of two vectors from the components of the original vectors.
......!!!!!!!!...................................
RESPONSE --> Add the x components and add the y components. Then use this value in the equation hypotenuse = sqrt (x^2 + y^2) confidence assessment: 2
.................................................
......!!!!!!!!...................................
22:12:53 ** If we add the x components of the original two vectors we get the x component of the resultant. If we add the y components of the original two vectors we get the y component of the resultant. **
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 3
.................................................
????avp????&w? assignment #019 019. `query 19 Physics I 03-27-2007 ???J??????^??? assignment #020 020. `query 20 Physics I 03-27-2007
......!!!!!!!!...................................
22:21:13 Explain how we get the components of the resultant of two vectors from the components of the original vectors.
......!!!!!!!!...................................
RESPONSE --> Add the x components. Add the y components. Use the equation: hypotenuse = sqrt (x^2 + y^2) confidence assessment: 2
.................................................
......!!!!!!!!...................................
22:21:19 ** If we add the x components of the original two vectors we get the x component of the resultant. If we add the y components of the original two vectors we get the y component of the resultant. **
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:23:22 Explain how we get the components of a vector from its angle and magnitude.
......!!!!!!!!...................................
RESPONSE --> x = hypotenuse * cos (theta) y = hypotenuse * sin (theta) confidence assessment: 2
.................................................
......!!!!!!!!...................................
21:28:23 ** To get the y component we multiply the magnitude by the sine of the angle of the vector (as measured counterclockwise from the positive x axis). To get the x component we multiply the magnitude by the cosine of the angle of the vector (as measured counterclockwise from the positive x axis). **
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 3
.................................................
......!!!!!!!!...................................
21:52:33 prin phy, gen phy 7.02. Const frict force of 25 N on a 65 kg skiier for 20 sec; what is change in vel?
......!!!!!!!!...................................
RESPONSE --> Fnet = `dp / `dt -25 N =`dp / 20s `dp = 500 p=mv 500 = 65 kg * v v = 7.7 m/s/s confidence assessment: 0
.................................................
......!!!!!!!!...................................
21:54:06 If the direction of the velocity is taken to be positive, then the directio of the frictional force is negative. A constant frictional force of -25 N for 20 sec delivers an impulse of -25 N * 20 sec = -500 N sec in the direction opposite the velocity. By the impulse-momentum theorem we have impulse = change in momentum, so the change in momentum must be -500 N sec. The change in momentum is m * `dv, so we have m `dv = impulse and `dv = impulse / m = -500 N s / (65 kg) = -7.7 N s / kg = -7.7 kg m/s^2 * s / kg = -7.7 m/s.
......!!!!!!!!...................................
RESPONSE --> I orginially had the negative signs in place but removed them thinking I did something wrong. Also, I am wondering why we we only consider the frictional force and not the force in the direction the skier is moving. self critique assessment: 2
.................................................
......!!!!!!!!...................................
22:08:38 gen phy #7.12 23 g bullet 230 m/s 2-kg block emerges at 170 m/s speed of block
......!!!!!!!!...................................
RESPONSE --> m1v1 + m2v2 = m3v3 + m4v4 (.023 kg * 230 m/s) + (2.0 kg * 0) = (.023 kg * 170 m/s) + (2.0 kg * v) 5.3 kg m/s + 0 = 3.9 kg m/s + 2.0 g v subtract 3.9 kg m/s from both sides divide both sides by 2.0 g v = .7 m/s confidence assessment: 1
.................................................
......!!!!!!!!...................................
22:08:52 **STUDENT SOLUTION: Momentum conservation gives us m1 v1 + m2 v2 = m1 v1' + m2 v2' so if we let v2' = v, we have (.023kg)(230m/s)+(2kg)(0m/s) = (.023kg)(170m/s)+(2kg)(v). Solving for v: (5.29kg m/s)+0 = (3.91 kg m/s)+(2kg)(v) .78kg m/s = 2kg * v v = 1.38 kg m/s / (2 kg) = .69 m/s. INSTRUCTOR COMMENT: It's probably easier to solve for the variable v2 ': Starting with m1 v1 + m2 v2 = m1 v1 ' + m2 v2 ' we add -m1 v1 ' to both sides to get m1 v1 + m2 v2 - m1 v1 ' = m2 v2 ', then multiply both sides by 1 / m2 to get v2 ` = (m1 v1 + m2 v2 - m1 v1 ' ) / m2. Substituting for m1, v1, m2, v2 we will get the result you obtained.**
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 3
................................................."