course Mth 174 ????~???f?????y????{assignment #014
......!!!!!!!!...................................
16:42:24 query problem 10.1.23 (3d edition 10.1.20) (was 9.1.12) g continuous derivatives, g(5) = 3, g'(5) = -2, g''(5) = 1, g'''(5) = -3
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
16:50:25 what are the degree 2 and degree 3 Taylor polynomials?
......!!!!!!!!...................................
RESPONSE --> Degree 2 = g(5) + g'(5)*(x-a) + [g""(5)*(x-a)^2]/2! = 3 - 2(x-5) + [(x-5)^2]/2! = 3 - 2(x-5) + [(x-5)^2]/2 Degree 3 = g(5) + g'(5)*(x-a) + [g""(5)*(x-a)^2]/2! + [g'""(5)*(x-a)^3]/3! = 3 - 2(x-5) + [(x-5)^2]/2! + [-3(x-5)^3]/3! = 3 - 2(x-5) + [(x-5)^2]/2 - [3(x-5)^3]/6
.................................................
......!!!!!!!!...................................
16:58:13 What is each polynomial give you for g(4.9)?
......!!!!!!!!...................................
RESPONSE --> 2nd Degree: g(4.9) = 3 - 2(4.9-5) + [(4.9-5)^2]/2 = 3 - 2(-0.1) + (-0.1)^2/2 = 3.205 3rd Degree: g(4.9) = 3.205 - [3(4.9-5)^3]/6 = 3.205 - (-0.1)^3/6 = 3.2055
.................................................
......!!!!!!!!...................................
17:11:47 What would g(4.9) be based on a straight-line approximation using graph point (5,3) and the slope -2? How do the Taylor polynomials modify this tangent-line estimate?
......!!!!!!!!...................................
RESPONSE --> Using the slope formula: m = (y2-y1)/(x2-x1) -2 = (3 - y)/(5-4.9) y = 2.8 The first degree Taylor polynomial is the tangent line at x=5 (in this case). Each additional degree adds a term with an additional power of x--by accounting for the change in the slope of g(x) near x and so on. Thus it produces a curve that is closer to g(x) near x=5, and each additional degree expands the interval in which the Taylor polynomial closely approximates g(x).
.................................................
......!!!!!!!!...................................
17:12:46 query problem 10.1.35 (3d edition 10.1.33) (was 9.1.36) estimate the integral of sin(t) / t from t=0 to t=1
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:22:46 what is your degree 3 approximation?
......!!!!!!!!...................................
RESPONSE --> g(t) = sin(t) g(0) = 0 g'(t) = cos(t) g'(0) = 1 g""(t) = -sin(t) g""(0) = 0 g'""(t) = -cos(t) g'""(0) = -1 P3(t) = 0 + 1*t + [0*t^2]/2! - [1*t^3]/3! = 0 + t - (t^3)/6 Substituting P(3)t for sin(t) in the integral: Integral (evaluated from 0 to 1) sin(t)/t dt = Integral (evaluated from 0 to 1) [t-(t^3)/6]/t dt = Integral (evaluated from 0 to 1) 1 - (t^2)/6 dt = t - (t^3)/18 evaluated from 0 to 1 = 1 - (1/18) = 0.94444....
.................................................
......!!!!!!!!...................................
17:31:09 what is your degree 5 approximation?
......!!!!!!!!...................................
RESPONSE --> Adding 2 terms to P3(t) g4(t) = sin(t) g4(0) = 0 g5(t) = cos(t) g5(0) = 1 P5(t) = t - (t^3)/6 + 0*(t^4)/4! + 1*(t^5)/5! P5(t) = t - (t^3)/6 - (t^5)/120 Substituting in the integral: = Integral (evaluated from 0 to 1) [t - (t^3)/6 - (t^5)/120]/t dt = Integral (evaluated from 0 to 1) 1 - (t^2)/6 + (t^4)/120 dt = t - (t^3)/18 + (t^5)/600, evaluated from 0 to 1 = 1 - (1/18) + (1/600) = 0.946111.....
.................................................
......!!!!!!!!...................................
17:31:22 What is your Taylor polynomial?
......!!!!!!!!...................................
RESPONSE --> See previous responses.
.................................................
......!!!!!!!!...................................
17:38:00 Explain in your own words why a trapezoidal approximation will not work here.
......!!!!!!!!...................................
RESPONSE --> A trapezoidal approximation takes the average of left and right Riemann sums. The right Riemann sums can be calculated for any n because the function is defined for the right side of any interval we choose. However, the left sums cannot be calculated becauxe no matter what n we choose, the function is not defined at x=0, which must be the function value for the first interval in any sum.
.................................................
......!!!!!!!!...................................
17:41:24 Query problem 10.2.25 (3d edition 10.2.21) (was 9.2.12) Taylor series for ln(1+2x)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
17:47:34 show how you obtained the series by taking derivatives
......!!!!!!!!...................................
RESPONSE --> f(x) = ln(1+2x) f(0) = ln(1+0) = 0 f'(x) = 2/(1+2x) f'(0) = 2 f""(x) = -4/(1+2x)^2 f""(0) = -4 f'""(X) = 16/(1+2x)^3 f'""(0) = 16 f4(x) = -96/(1+2x)^4 f4(0) = -96 P(x) = 0 + 2x - 4x^2/2! + 16x^3/3! - 96x^4/4! +.... P(x) = 2x - 2x^2 +8x^3/3 - 4x^4 + ...
.................................................
......!!!!!!!!...................................
17:49:46 how does this series compare to that for ln(1+x) and how could you have obtained the above result from the series for ln(1+x)?
......!!!!!!!!...................................
RESPONSE --> This series can be obtained from the series for ln(1+x) with each term multiplied by 2^n for n>=1 or or by substituting 2x for x in each term of the ln(1+x) series.
.................................................
......!!!!!!!!...................................
17:56:04 What is your expected interval of convergence?
......!!!!!!!!...................................
RESPONSE --> The interval of convergence for ln(1+x) is -1
.................................................
......!!!!!!!!...................................
17:58:57 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE --> I found this topic to be very interesting.
.................................................
"