course Mth 174 }????????????assignment #018018. `query 18
......!!!!!!!!...................................
19:05:29 Query problem 11.3.4 (was 10.3.6) Euler y' = x^3-y^3, (0,0), `dx = .2, 5 steps
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
19:13:07 what is your estimate of y(1)?
......!!!!!!!!...................................
RESPONSE --> Starting from (0,0): m = 0, delta y = 0.2*0 = 0, new point (0.2,0) m = 0.2^3 = 0.008, delta y = 0.2*.008 = 0.0016, new point (0.4, 0.0016) m = 0.4^3 - 0.0016^3 = 0.064, delta y = 0.2*0.064 = 0.0128, new point (0.6, 0.0144) m = 0.6^3 - 0.0144^3 = 0.216, delta y = 0.2*0.216 = 0.0432, new point (0.8,0.0576) m = 0.8^3 - 0.0576^3 = 0.512, delta y = 0.2*0.512 = 0.1024, new point (1.0, 0.16) y(1) = 0.16
.................................................
......!!!!!!!!...................................
19:18:37 Describe how the given slope field is consistent with your step-by-step results.
......!!!!!!!!...................................
RESPONSE --> Although difficult to discern due to the scale used on the slope field, the results of Euler's method appear to be consistent with the slope field as x increases from 0 to about 0.6, after which the slope field shows an increasing slope compared to the results obtained (the slope field shows an increasingly more positive slope than do the results obtained using Euler's method). Thus, Euler's method produces an underestimate.
.................................................
......!!!!!!!!...................................
19:20:06 Is your approximation an overestimate or an underestimate, and what property of the slope field allows you to answer this question?
......!!!!!!!!...................................
RESPONSE --> The approximation is an underestimate, because the slope field shows an increasingly positive slope as x approaches 1, and the slope is much more positive than the slopes obtained by Euler's method.
.................................................
......!!!!!!!!...................................
19:20:19 Query problem 11.3.10 (was 10.3.10) Euler and left Riemann sums, y' = f(x), y(0) = 0
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
19:28:21 explain why Euler's Method gives the same result as the left Riemann sum for the integral
......!!!!!!!!...................................
RESPONSE --> Since the initial point is (0,0) and dy/dx = f(x), the initial slope = f(x) = 0. For any delta x, delta y = 0 * delta x = 0, resulting in the next point being (delta x, 0). Since f(x) remains 0, the slope remains zero, and delta y remains 0 for all further points (f(x) = 0 for all x. Thus, the curve of f(x) is the x-axis. Since f(x) = 0, all left Riemann sums = 0 * delta x = 0. Therefore, the integral (0 to x) of f(t) dt = the integral (0 to x) of 0 dt = 0, which is the same result as the Euler method.
.................................................
......!!!!!!!!...................................
19:33:19 Query problem 11.4.19 (3d edition 11.4.16) (was 10.4.10) dB/dt + 2B = 50, B(1) = 100
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
19:40:56 what is your solution to the problem?
......!!!!!!!!...................................
RESPONSE --> dB/dt + 2B = 50 dB/dt = 50 - 2B dB/(50-2B) = dt (-1/2)*dB/(B-25) = dt (-1/2)*integral dB/(B-25) = integral dt (-1/2) ln |B-25| = t + c ln |B-25| = -2t + c |B-25| = e^(-2t+c) B-25 = Ae^(-2t) (A constant) B = Ae^(-2t) + 25 Substituting: B(1) = 100 100 = Ae^(-2) + 25 A = 75/e^(-2) = 75e^2 Substituting: B = 75e^2*e^(-2t) + 25 B = 75e^(2-2t) + 25
.................................................
......!!!!!!!!...................................
19:42:20 What is the general solution to the differential equation?
......!!!!!!!!...................................
RESPONSE --> The general solution is: B = Ae^(-2t) + 25 (from previous response)
.................................................
......!!!!!!!!...................................
19:42:30 Explain how you separated the variables for the problem.
......!!!!!!!!...................................
RESPONSE --> See previous response.
.................................................
......!!!!!!!!...................................
19:42:41 What did you get when you integrated the separated equation?
......!!!!!!!!...................................
RESPONSE --> See previous response.
.................................................
......!!!!!!!!...................................
19:44:32 Query problem 11.4.40 (3d edition 11.4.39) (was 10.4.30) t dx.dt = (1 + 2 ln t ) tan x, 1st quadrant
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
19:59:28 what is your solution to the problem?
......!!!!!!!!...................................
RESPONSE --> t*dx/dt = (1 + 2ln t)tan x dx/tan x = t(1 + 2 ln t) dt Integral dx/tan x = Integral t(1 + 2 ln t) dt Integral dx/(sin x/cos x) = Integral t dt + 2*Integral ln t dt Integral cos x/sin x dx = (t^2)/2 + 2(t*ln t - t) + c u = sin x du = cos x dy Integral (1/u) du = (t^2)/2 + 2t*ln t - 2t + c ln |u| = (t^2)/2 + 2t*ln t - 2t + c ln |sin x| = (t^2)/2 + 2t*ln t - 2t + c sin x = e^(t^2)/2 + 2t*ln t - 2t + c) sin x = e^[(t^2)/2 - 2t](e^c)[e^(2t*ln t)] sin x = Ae^[(t^2)/2 - 2t]*(e^ln t)^(2t) sin x = Ae^[(t^2)/2 - 2t]*t^(2t) sin x = A*[t^(2t)]*(e^[(t^2)/2 - 2t] x = arcsin A*t^(2t)*e^[(t^2)/2 - 2t]
.................................................
......!!!!!!!!...................................
20:04:54 What is the general solution to the differential equation?
......!!!!!!!!...................................
RESPONSE --> Previous response was the general solution. Unless I'm missing something here, I don't believe that a specific solution is possible without an initial point.
.................................................
......!!!!!!!!...................................
20:05:06 Explain how you separated the variables for the problem.
......!!!!!!!!...................................
RESPONSE --> See previous response.
.................................................
......!!!!!!!!...................................
20:05:19 What did you get when you integrated the separated equation?
......!!!!!!!!...................................
RESPONSE --> See previous response.
.................................................
......!!!!!!!!...................................
20:18:58 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE --> It was very interesting to reverse the differentiation of implicit functions done in the first part of the book. It's interesting that the solution to 11.4.45 (y' = x/y) which is x^2 - y^2 = 2C becomes the standard form of a hyperbola by dividing through by 2C.
.................................................