course phy121 zg~P
......!!!!!!!!...................................
20:07:05 `q001 Note that there are 10 questions in this assignment. At a certain instant the speedometer of a car reads 5 meters / second (of course cars in this country generally read speeds in miles per hour and km per hour, not meters / sec; but they could easily have their faces re-painted to read in meters/second, and we assume that this speedometer has been similarly altered). Exactly 4 seconds later the speedometer reads 25 meters/second (that, incidentally, indicates very good acceleration, as you will understand later). At what average rate is the speed of the car changing with respect to clock time?
......!!!!!!!!...................................
RESPONSE --> Well, If the car essentially moves 25 meters in 4 seconds that would put the car moving at about 6.25 meters in one second. confidence assessment: 3
.................................................
......!!!!!!!!...................................
20:08:14 The rate of change of the speed with respect clock time is equal to the change in the speed divided by the change in the clock time. So we must ask, what is the change in the speed, what is the change in the clock time and what therefore is the rate at which the speed is changing with respect to clock time? The change in speed from 5 meters/second to 25 meters/second is 20 meters/second. This occurs in a time interval lasting 4 seconds. The average rate of change of the speed is therefore (20 meters/second)/(4 seconds) = 5 meters / second / second. This means that on the average, per second, the speed changes by 5 meters/second.
......!!!!!!!!...................................
RESPONSE --> ok, I was actually trying to work the problem out. self critique assessment: 2
.................................................
......!!!!!!!!...................................
20:09:15 `q002. Explain in commonsense terms of the significance for an automobile of the rate at which its velocity changes. Do you think that a car with a more powerful engine would be capable of a greater rate of velocity change?
......!!!!!!!!...................................
RESPONSE --> Yes, A car with a more powerful engine can reach a certain speed faster then a car with a less powerful engine. confidence assessment: 3
.................................................
......!!!!!!!!...................................
20:09:47 A car whose velocity changes more rapidly will attain a given speed in a shorter time, and will be able to 'pull away from' a car which is capable of only a lesser rate of change in velocity. A more powerful engine, all other factors (e.g., weight and gearing) being equal, would be capable of a greater change in velocity in a given time interval.
......!!!!!!!!...................................
RESPONSE --> Yes, This is what I also believed. self critique assessment: 2
.................................................
......!!!!!!!!...................................
20:10:47 `q003. Explain how we obtain the units meters / second / second in our calculation of the rate of change of the car's speed.
......!!!!!!!!...................................
RESPONSE --> vAve=m/s confidence assessment: 1
.................................................
......!!!!!!!!...................................
20:13:03 When we divide the change in velocity, expressed in meters/second, by the duration of the time interval in seconds, we get units of (meters / second) / second, often written meters / second / second.
......!!!!!!!!...................................
RESPONSE --> Ok I understand how it is written but it really dosnt make since why second is wrote twice. self critique assessment: 2
.................................................
......!!!!!!!!...................................
20:14:33 `q004. The unit (meters / second) / second is actually a complex fraction, having a numerator which is itself a fraction. Such a fraction can be simplified by multiplying the numerator by the reciprocal of the denominator. We thus get (meters / second) * (1/ second). What do we get when we multiply these two fractions?
......!!!!!!!!...................................
RESPONSE --> 1second=meters/second confidence assessment: 2
.................................................
......!!!!!!!!...................................
20:16:40 Multiplying the numerators we get meters * 1; multiplying the denominators we get second * second, which is second^2. Our result is therefore meters * 1 / second^2, or just meters / second^2. If appropriate you may at this point comment on your understanding of the units of the rate of change of velocity.
......!!!!!!!!...................................
RESPONSE --> ok. So meters X 1 = meters and second X second = second^2 self critique assessment: 2
.................................................
......!!!!!!!!...................................
20:18:00 `q004. If the velocity of an object changes from 10 m/s to -5 m/s during a time interval of 5 seconds, then at what average rate is the velocity changing?
......!!!!!!!!...................................
RESPONSE --> The average rate changes about 3 meters per second. confidence assessment: 2
.................................................
......!!!!!!!!...................................
20:18:33 We see that the velocity changes from 10 meters/second to -5 meters/second, a change of -15 meters / second, during a five-second time interval. A change of -15 m/s during a 5 s time interval implies an average rate of -15 m/s / (5 s) = -3 (m/s)/ s = -3 m/s^2. This is the same as (-3 m/s) / s, as we saw above. So the velocity is changing by -3 m/s every second.
......!!!!!!!!...................................
RESPONSE --> ok I just didnt know to make it negative. self critique assessment: 2
.................................................
......!!!!!!!!...................................
20:20:03 `q005. You should have noted that velocity can be positive or negative, as can the change in velocity or the rate at which velocity changes. The average rate at which a quantity changes with respect to time over a given time interval is equal to the change in the quantity divided by the duration of the time interval. In this case we are calculating the average rate at which the velocity changes. If v represents velocity then we we use `dv to represent the change in velocity and `dt to represent the duration of the time interval. What expression do we therefore use to express the average rate at which the velocity changes?
......!!!!!!!!...................................
RESPONSE --> vAve='ds/'dt confidence assessment: 3
.................................................
......!!!!!!!!...................................
20:22:21 The average rate would be expressed by [ave rate of velocity change with respect to clock time] = `dv / `dt. The expression [ave rate of velocity change with respect to clock time] is pretty cumbersome so we give it a name. The name we give it is 'average acceleration', abbreviated by the letter aAve. Using a to represent acceleration, write down the definition of average acceleration. The definition of average acceleration is aAve = `dv / `dt. Please make any comments you feel appropriate about your understanding of the process so far.
......!!!!!!!!...................................
RESPONSE --> ok i understand that, but now I just dont understand what the difference is between vAve and aAve self critique assessment: 2
.................................................
......!!!!!!!!...................................
20:24:25 `q006. If a runner is moving at 6 meters / sec at clock time t = 1.5 sec after starting a race, and at 9 meters / sec at clock time t = 3.5 sec after starting, then what is the average acceleration of the runner between these two clock times?
......!!!!!!!!...................................
RESPONSE --> The runner moves 3 meters for every 2 seconds. Or 1.5 meters a second. confidence assessment: 3
.................................................
......!!!!!!!!...................................
20:27:11 `q006a. What is the change `dv in the velocity of the runner during the time interval, and what is the change `dt in clock time during this interval?
......!!!!!!!!...................................
RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. Always critique your solutions by describing any insights you had or errors you makde, and by explaining how you can make use of the insight or how you now know how to avoid certain errors. Also pose for the instructor any question or questions that you have related to the problem or series of problems. The change im time is 2 seconds,the change in the meters is 3 meters. confidence assessment: 3
.................................................
......!!!!!!!!...................................
20:27:37 We see that the runner's velocity changes from 6 meters/second to 9 meters/second, a change of `dv = 9 m/s - 6 m/s = 3 m/s, during a time interval their runs from t = 1.5 sec to t = 3.5 sec so that the duration of the interval is `dt = 3.5 s - 1.5 s = 2.0 s. The rate at which the velocity changes is therefore 3 m/s / (2.0 s) = 1.5 m/s^2. Please comment if you wish on your understanding of the problem at this point.
......!!!!!!!!...................................
RESPONSE --> self critique assessment: 3
.................................................
......!!!!!!!!...................................
20:29:05 `q007. On a graph of velocity vs. clock time, we can represent the two events of this problem by two points on the graph. The first point will be (1.5 sec, 6 meters/second) and the second point will be (3.5 sec, 9 meters / sec). What is the run between these points and what does it represent? What is the rise between these points what does it represent? What is the slope between these points what does it represent?
......!!!!!!!!...................................
RESPONSE --> The rise is 2 seconds The run is 3 meters The slope is 2.5 confidence assessment: 2
.................................................
......!!!!!!!!...................................
20:30:10 The rise from the first point to the second is from 6 meters/second to 9 meters/second, or 3 m/s. This represents the change `dv in velocity. The run is from 1.5 seconds to 3.5 seconds, or 2 seconds, and represents the change `dt in clock time. The slope, being the rise divided by the run, is 3 m/s / (2 sec) = 1.5 m/s^2. This slope represents `dv / `dt, which is the average acceleration during the time interval. You may if you wish comment on your understanding to this point.
......!!!!!!!!...................................
RESPONSE --> Ok i understand how to get the rise and run and slope.I messed up on the slope. I added the two together and then divided,I understand now. self critique assessment: 2
.................................................
......!!!!!!!!...................................
20:31:35 `q008. In what sense does the slope of any graph of velocity vs. clock time represent the acceleration of the object? For example, why does a greater slope imply greater acceleration?
......!!!!!!!!...................................
RESPONSE --> The greater the distance either up or down is acceleration. A car speeding up in acceleration or a ball rolling downhill is acceleration. The distance verses times shows how quick or how slow the object moves in that length of time. confidence assessment: 3
.................................................
......!!!!!!!!...................................
20:31:59 Since the rise between two points on a graph of velocity vs. clock time represents the change in `dv velocity, and since the run represents the change `dt clock time, the slope represents rise / run, or change in velocity /change in clock time, or `dv / `dt. This is the definition of average acceleration.
......!!!!!!!!...................................
RESPONSE --> Yes I understand self critique assessment: 2
.................................................
......!!!!!!!!...................................
20:33:19 `q009. This is the same situation as in the preceding problem: An automobile coasts down a hill with a constant slope. At first its velocity increases at a very nearly constant rate. After it attains a certain velocity, air resistance becomes significant and the rate at which velocity changes decreases, though the velocity continues to increase. Describe a graph of velocity vs. clock time for this automobile (e.g., neither increasing nor decreasing; increasing at an increasing rate, a constant rate, a decreasing rate; decreasing at an increasing, constant or decreasing rate; the description could be different for different parts of the graph).
......!!!!!!!!...................................
RESPONSE --> I would guess a car coasting downhill would move at an increasing rate because the car would speed up. confidence assessment: 2
.................................................
......!!!!!!!!...................................
20:34:30 Your graph should have velocity as the vertical axis and clock time as the horizontal axis. The graph should be increasing since the velocity starts at zero and increases. At first the graph should be increasing at a constant rate, because the velocity is increasing at a constant rate. The graph should continue increasing by after a time it should begin increasing at a decreasing rate, since the rate at which the velocity changes begins decreasing due to air resistance. However the graph should never decrease, although as air resistance gets greater and greater the graph might come closer and closer to leveling off. Critique your solution by describing or insights you had or insights you had and by explaining how you now know how to avoid those errors.
......!!!!!!!!...................................
RESPONSE --> Ok i understand I wasnt thinking about the air resistance but I guess that is true the car will slow down with the amount of resistance. self critique assessment: 2