#$&* course Mth 279 6/12 10:20 pm qa_00#$&*
.............................................
.............................................
Given Solution: none &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I feel like I got the first and second one right. I’m not very good at differentiating and integrating and frequently get them confused. @& You've got some errors in there, and some are correct. I'm going to ask you to resubmit your work on the second and third expressions and include the details of your thinking, without skipping any steps. Not all of your answers on those expressions are wrong, but I need to give you more feedback on the process. *@ ------------------------------------------------ ------------------------------------------------ Self-critique rating:0 ********************************************* ********************************************* Question: `q002. Sketch a graph of the function y = 3 sin(4 t + 2). Don't use a graphing calculator, use what you know about graphing. Make your best attempt, and describe both your thinking and your graph. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The graph goes between 3 and -3. It is a sine curve shifted 2 units to the left. At t = -2, the graph is on the x-axis. #### I think the period is pi/2 If the period of sin(t) is 2*pi, then the period of sin(4t) should be four times smaller. 2*pi = 4t, t = pi/2 ####
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I know the 4t does something but I don't know what ------------------------------------------------ ------------------------------------------------ Self-critique rating: ********************************************* ********************************************* Question: `q003. Describe, in terms of A, omega and theta_0, the characteristics of the graph of y = A cos(omega * t + theta_0) + k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A is the amplitude, theta_0 is the direction the graph is shifted (left if positive, right if negative). I don't know what omega does. ##### Omega changes the period of the function. The period is equal to 2*pi/omega ##### @& This is covered in the videos on the Introductory Disk (Disk 0). You really need to understand these functions for the work we'll be doing during the middle third of the course. If after viewing the introductory series of videos you still aren't comfortable with trigonometric functions and questions of this nature, I can recommend additional materials. *@ confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ ------------------------------------------------ Self-critique rating: ********************************************* ********************************************* Question: `q004. Find the indefinite integral of each of the following: • f(t) = e^(-3 t) • x(t) = 2 sin( 4 pi t + pi/4) • y(t) = 1 / (3 x + 2) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1. -1/3 e^(-3t) +C 2. 1/(2pi)*cos(4 pi t +pi/4) +C 3. ln (3x+2) +C #### 1. Because the coefficient of t is -3, I multiply the expression by the reciprocal. The power of the equation does not change. 2. The 2 stays out front because it is a constant. The integral of sin is negative cos. Then I used chain rule to multiply the expression by the reciprocal of the coefficient of t. 2*(-cos(4pi +pi/4)) * (1/(4pi)) -(1/2pi)cos(4pi + pi/4)+C 3. The integral of 1/x is ln(x). Because x has a coefficient of 3, the 3 becomes a constant 3ln(3x+2) + C @& You should be indicating how you arrive at your results, at least in a brief outline that describes the main operations. *@
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I think the first one is right ------------------------------------------------ ------------------------------------------------ Self-critique rating: ********************************************* ********************************************* Question: `q005. Find an antiderivative of each of the following, subject to the given conditions: • f(t) = e^(-3 t), subject to the condition that when t = 0 the value of the antiderivative is 2. • x(t) = 2 sin( 4 pi t + pi/4), subject to the condition that when t = 1/8 the value of the antiderivative is 2 pi. • y(t) = 1 / (3 t + 2), subject to the condition that the limiting value of the antiderivative, as t approaches infinity, is -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1. -1/3 e^(-3t) +2 2. -1/(2pi) cos(4 pi t +pi/4) + pi/2 3. ln(3t+2) -2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I think the first one is right. I completely guessed on the other two ------------------------------------------------ ------------------------------------------------ Self-critique rating: ********************************************* ********************************************* Question: `q006. Use partial fractions to express (2 t + 4) / ( (t - 3) ( t + 1) ) in the form A / (t - 3) + B / (t + 1). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I know the first step is to multiply the two parts of the denominator (not sure why) (t-3)(t+1) = t^2-2t-3 Since there are no t^2 terms, we ignore that. A will be the t terms and B the constants A = -2, B = -3 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I used to know this really well. That seems way too easy to be the answer though. ##### We start with two fractions A/(t-3) and B/(t+1). We want them to have the same denominator, so we multiply A by (t+1) and B by (t-3) At+A+Bt-3B Because the coefficient of t in our original equation is 2, any terms with t need to add up to equal 2. Similarly, any constants need to add up to 4. We have two expressions At + Bt = 2t A + B = 2 A-3B = 4 We solve by subtracting, and get A = 5/2 and B = -1/2 Our expression becomes: 5/(2*(t-3) - 1/(2*(t+1)) #####
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I really don't have any idea. That's not to say that I wasn't taught it, because I'm sure that I was. I just can't remember ------------------------------------------------ ------------------------------------------------ Self-critique rating: ********************************************* ********************************************* Question: `q008. The graph of a function g(t) contains the points (3, 4), (3.2, 4.4) and (3.4, 4.5). What is your best estimate of the value of g ' (3), where the ' represents the derivative with respect to t? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I think this is the trapezoid thing. Using the points, I make 2 trapezoids, and find the area of both Area of first one = (b1+b2)/2*h = (4+4.4)/2*.2 = 0.62 Area of second = (4.4+4.5)/2*.2 = 0.89 .89+.62 = 1.51 g'(3) = 1.51 ##### The derivative of a graph is another graph about its slope. The trapezoids give me the area under the graph, which is the integral. But in the last problem I used one to find slope? Not really sure about that The slope from (3,4) to (3.2, 4.4) is .2 Therefore the value of g'(3) should be close to .2 ##### @& You have estimated the area underneath the graph. This would be an estimate of the integral of g(t) from t = 3 to t = 3.4. What aspect of the graph of a function is its derivative related to? What information would your trapezoids give you about that aspect of this graph? *@
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ ------------------------------------------------ Self-critique rating: "" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ ------------------------------------------------ Self-critique rating: "" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ ------------------------------------------------ Self-critique rating: #*&! @& You're doing some good things. There are also some things you'll want to do more work on, and some things you'll want to review. Please see my notes and submit a copy of this document with revisions, comments and/or questions, and mark your insertions with &&&& (please mark each insertion at the beginning and at the end). Be sure to include the entire document, including my notes. *@ "