#$&* course Mth 279 12:25 pm 6/15 Section 2.2*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I am still unsure of how e^(p(t)) is related.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3. (t^2 + t) y' + (2t + 1) y = 0, y(0) = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y' + (2t +1)/(t^2 + t) y = 0 p(t) = (2t+1)/(t^2 + t) I don't know how to do this integral ??? P(t) = lnt + ln(t+1) y = C e^(lnt + ln(t+1)) y = C( t + t+ 1) y = C(2t+1) IVP 1 = C (0+1) C = 1 y = 2t + 1 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 4. y ' + sin(3 t) y = 0, y(0) = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p(t) = sin(3t) P(t) = -1/3 cos(3t) y = Ce^(-1/3 cos(3t)) 2 = Ce^(-1/3 cos(0) 2 = Ce^(-1/3) C = 2e^(1/3) y = 2e^(-1/3 cos(3t) + 1/3) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. Match each equation with one of the direction fields shown below, and explain why you chose as you did. y ' - t^2 y = 0 **** y' = t^2*y B, because the graph is of a parabola #$&* y ' - y = 0 **** y' = y graph A because the graph is of y' = y #$&* y' - y / t = 0 **** C because the y=t line is at a constant slope of 1 #$&* y ' - t y = 0 **** F because the slopes are 0 when either equal 0 #$&* y ' + t y = 0 **** E because the y = 0 and t = 0 lines all have slopes of 0 #$&* A B C D E F 6. The graph of y ' + b y = 0 passes through the points (1, 2) and (3, 8). What is the value of b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p(t) = b P(t) = bt + C y = C e^(bt) 2 = C e^(b) 8 = Ce^(3b) I'm not really sure how to solve these two equations. C = 2/e^(b) plugging into second equation 8 = (2e^(-b)) e^(b) 8 = (2 e^(-b+b)) 8 = 2e ? There is no solution??? confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 7. The equation y ' - y = 2 is first-order linear, but is not homogeneous. If we let w(t) = y(t) + 2, then: What is w ' ? **** w' = y' #$&* What is y(t) in terms of w(t)? **** y(t) = w(t) - 2 #$&* What therefore is the equation y ' - y = 2, written in terms of the function w and its derivative w ' ? **** w' - (w(t) - 2)) = 2 w' - w = 0 #$&* Now solve the equation and check your solution: Solve this new equation in terms of w. **** p(t) = -1 P(t) = -t w = C e^(-t)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 8. The graph below is a solution of the equation y ' - b y = 0 with initial condition y(0) = y_0. What are the values of y_0 and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_0 = 1 p(t) = -b P(t) = -bt y = Ce^(-bt) 1 = C e^0 C = 1 y = e^(-bt) plugging in (1, 2) 2 = e^(-b) ln2 = -b b = -ln2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!