#$&* course Mth 279 6/15 3:09 pm Solve each equation:*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 2. y ' + t y = 3 t YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p(t) = t P(t) = t^2/2 u = e^(t^2/2) e^(t^2/2)y' + e^(t^2/2) ty = 3t e^(t^2/2) integrate both sides. How do you integrate the right side??? I do not understand how to get the answer. I tried to do integration by parts but it got terribly messy and had 5 terms e^(t^2/2) y = 3e^(t^2/2) y = 3 + Ce^(t^2/2)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Where can I find a refresher of integration by parts??? ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I just don't know how to integrate e^(-4t)sin(2t) ???
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 5. y ' + 3 y = 3 + 2 t + e^t, y(1) = e^2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: p(t) = 3 P(t) = 3t u = e^(3t) e^(3t) y' + 3e^(3t) y = 3e^(3t) + 2te^(3t) + e^(t)e^(3t) integrate both sides, using tabular on the second term e^(3t) y = e^(3t) + [ 6te^(3t) -18e^(3t) ] + 1/4 e^(4t) +C y = 1 + 6t - 18 + 1/4 e^(t) + Ce^(-3t) y = 6t - 17 + .25e^(t) + Ce^(-3t) plugging in IVP e^2 = 6 - 17 + .25e + C e^(-3) 11 -.25 e + e^2 = Ce^(-3) 11e^(3) - .25e^(4) + e^(5) = C Can you simplify this???
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 6. The general solution to the equation y ' + p(t) y = g(t) is y = C e^(-t^2) + 1, t > 0. What are the functions p(t) and g(t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: going backwards u = e^(t^2) P(t) = t^2 p(t) = 2t my guess is g(t) = 1, but I'm not too sure why do everything I normally do, but backwards multiply right side by u C + e^(t^2) take the derivative 2t e^(t^2) divide by u 2t just kidding, g(t) = 2t and that is my final answer confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!