#$&* course Mth 279 Query 05 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.10. Solve 3 y^2 y ' + 2 t = 1 with initial condition y(0) = -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3y^2 y' = 1- 2t integrate y^3 y = t - t^2 + C
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): not 100% sure if I did that right. I tried following the example in the book ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.18. State a problem whose implicit solution is given by y^3 + t^2 + sin(y) = 4, including a specific initial condition at t = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: take the derivative(?) 3y^2 y' + 2t + cos(y) y' = 0 y' (3y^2 + cos(y) ) = 2t
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): was I on kind of on the right track ??? ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.24. Solve the equation y ' = (y^2 + 2 y + 1) sin(t) fand determine the t interval over which he solution exists. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y' / (y^2 + 2y + 1) = sin(t) integrate I don't know how to integrate 1/(y^2 + 2y + 1) I thought I could do u sub, but then I'd get u = y^2 + 2y + 1 and du = 2y +2 and that's not helpful then I thought of the power rule (y^2 + 2y + 1)^(-1) but then I'd end up with ln (y^2 + 2y + 1) / (2y+2) how is this done???
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): just not sure about integrating still ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.28. Match the graphs of the solution curves with the equations y ' = - y^2, y ' = y^3 an dy ' = y ( 4 - y). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For me this is problem 30 in section 2.7 I'm not at all sure how to solve for this problem. Just by looking at the graphs I think y' = y^3 is graph B, only because it looks like a x^3 equation. By the same reasoning I think y' = -y^2 is graph A and y' = y(4-y) is graph C I should be able to solve these and then match with the graphs y' = y^3 integrate y = 1/4 y^4 But that doesn't look like any of these graphs I don't think I fully understand this question ??? y' = -y^2 integrate y = -1/3 y^3, this sorta looks like graph B, but it's facing the wrong way y' = 4y - y^2 integrate y = 2y^2 -1/3 y^3, this doesn't really look like any of the graphs either.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ???? ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: