query 07

#$&*

course Mth 279

6/23 11:23

Query 07 Differential Equations*********************************************

Question:  3.4.2.  Solve the equation y ' = 2 t y ( 1 - y), with y(0) = -1, as a Bernoulli equation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 

 y' = 2ty - 2ty^2

y' - 2ty = -2ty^2

n = 2, v = y^(1-2) = y^(-1)

v' - (-1)v = (-1) t

 v' - v = -t

p(t) = -1

P(t) = -t

u = e^(-t)

e^(-t) v' - e(-t)v = -e^(-t)t

integrate

e^(-t) v = -te^(-t) - e^(-t) + C

v = -t -1 + Ce^(t)

-1 = 0 - 1 + Ce

0 = C

v = t-1

@&

We rearrange the equation to the form

y ' - 2 t y = 2 t y^2.

Letting v = y^m we get

v ' = m y^(m-1) * y '

so that

y ' = 1/m y^(1-m) v '

and since y = v^(1/m)

y ' = 1/m v^( (1 - m) / m) v '

Substituting for y and y ' we have

1/m v^( (1 - m) / m) v ' - 2 t v^(1/m) = 2 t v(2/m).

Multiplying both sides by m v^((1-m) / m) we get

v ' - 2 m t v = 2 m t v^(1/m + 1) .

The v on the right-hand side will 'disappear' if we let 1/m + 1 = 0, so that m = -1. The equation becomes

v ' + 2 t v = -2 t,

now a first-order linear homogeneous equation with integrating factor e^(t^2).

Multiplying by the integrating factor we have

e^(t^2) v ' + 2 t e^(t^2) v = 2 t e^(t^2).

The left-hand side is ( e^(t^2) v) ' so integration of the equation how yields

e^(t^2) v = integral(2 t e^(t^2) dt)

giving us

e^(t^2) v = e^(t^2) + c

v = e^(t^2 + c) / e^(t^2) = 1 + c e^(-t^2).

Since m = - 1, v = y^-1 so

1/y = 1 + c e^(-t^2)

and

y = 1 / (1 + c e^(-t^2)).

The initial condition y(0) = -1 gives us

-1 = 1 / (1 + c e^0) = 1 / (1 + c),

which is easily solved to obtain c = -2.

Thus

y = 1 / (1 - 2 e^(-t^2)).

*@

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 I don't think I fully understand the purpose of this way of solving???

 

 

------------------------------------------------

Self-critique rating:

*********************************************

Question:  3.4.6.  Solve the equation y ' - y = t y^(1/3), y(0) = -9 as a Bernoulli equation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 

 n = 1-1/3 = 2/3

v = y^(2/3)

v' - 2/3 = 2/3t

p(t) = -2/3

P(t) = -2/3 t

u = e^(-2/3 t)

 e^(-2/3 t) v' - 2/3 e^(-2/3 t) = e^(-2/3 t) (2/3 t)

integrate

e^(-2/3 t) v = 2/3 (-2/3 te^(-2/3 t) - 4/9 e^(-2/3 t))C

v = -4/9 t - 8/27 + Ce^(-2/3t)

-9 = 0 -8/27 + C

C = -9 + 8/27 = -8.7037

v = -4/9 t - 8/27 - 8.7037e^(-2/3t)

 

@&

To solve y ' + p(t) y = q(t) y^n:

1. Let v = y^m, where m = 1 - n.

2. The resulting equation will be v ' + m p(t) v = q(t).

3. Solve for v.

4. Plug in y^m for v.

In this case, n = 1/3 so m = 1 - n = 1 - 1/3 = 2/3.

v = y^m = y^(2/3)

The resulting equation is

v ' - 2/3 v = t

This is solved using integrating factor e^(-2/3 t), obtaining

(v e^(-2/3 t) ) ' = t e^(-2/3 t)

Integrating both sides we get

v e^(-2/3 t) = -3/2 t e^(-2/3 t) - 9 / 4 e^(- 2/3 t) + c

so that

v = -3/2 t - 9/4 + c e^(2/3 t).

Since m = 2/3, v = y^(2/3) so

y^(2/3) = -3/2 t - 9/4 + c e^(2/3 t)

and

y = (-3/2 t - 9/4 + c e^(2/3 t))^(3/2)

*@

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 

 I really don't think I should be getting fractions like 8/27

???

 

 

------------------------------------------------

Self-critique rating:

@&

There is nothing unusual about getting such fractions.

*@

*********************************************

Question:  3.4.8.  Solve the equation y ' = - (y + 1) + t ( y + 1)^(-2) as a Bernoulli equation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 n = -2

v = y^(3)

 

v' = -(1+2) + (1+2) t v

v' = -3 + 3tv

v' - 3tv = -3

p(t) = -3t

P(t) = -3/2 t^2

u = e^(-3/2 t^2)

e^(-3/2 t^2) v' - 3t e^(-3/2 t^2) v = -3e^(-3/2 t^2)

integrate

e^(-3/2 t^2) v = -4/3 e^(-3/2 t^2) + C

v = -4/3 + Ce^(3/2 t^2) is the general solution

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 I'm still unsure why we solve this way

 

 

------------------------------------------------

Self-critique rating:

@&

For equations of this form, the method works.

No other known method does.

*@