#$&* course Mth 279 7/1 11:07 pm #$&* course Mth 279
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ ------------------------------------------------ Self-critique rating: ********************************************* ********************************************* Question: 3.2.10. Solve 3 y^2 y ' + 2 t = 1 with initial condition y(0) = -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3y^2 y' = 1- 2t integrate y^3 y = t - t^2 + C @& Your left-hand side is not correct. The equation becomes 3 y^2 dy = (1 - 2t) dt An antiderivative of the left-hand side is y^3. The derivative of y^3 with respect to t is 3 y^2 y '. *@ #### I think here is where I don't understand. how does integral[ y^3] = 3y^2 y' ??? Every other time doesn't it equal 3y^2 ? ?? And this is called implicit... something? y^3 = t - t^2 + C y = cuberoot[ t- t^2 + C] How do you notate cube roots??? -1 = cuberoot [ 0 - 0 + C] C = -1 y = cuberoot[ t- t^2 -1] #### y = (t-t^2 + C)/y^3 initial conditions -1 = (0 + 0 + C)/y^3 C =- y^3 y = (t-t^2 - y^3)/y^3 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): not 100% sure if I did that right. I tried following the example in the book ------------------------------------------------ ------------------------------------------------ Self-critique rating: ********************************************* ********************************************* Question: 3.2.18. State a problem whose implicit solution is given by y^3 + t^2 + sin(y) = 4, including a specific initial condition at t = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: take the derivative(?) 3y^2 y' + 2t + cos(y) y' = 0 y' (3y^2 + cos(y) ) = 2t @& The equation y' (3y^2 + cos(y) ) = 2t means (3 y^2 + cos(y) ) dy/dt = 2 t, which is effectively rearranged to (3 y^2 + cos(y) ) dy = 2 t dt
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): was I on kind of on the right track ??? ********************************************* ********************************************* Question: 3.2.10. Solve 3 y^2 y ' + 2 t = 1 with initial condition y(0) = -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3y^2 y' = 1- 2t integrate y^3 y = t - t^2 + C @& Your left-hand side is not correct. The equation becomes 3 y^2 dy = (1 - 2t) dt An antiderivative of the left-hand side is y^3. The derivative of y^3 with respect to t is 3 y^2 y '. *@ #### I think here is where I don't understand. how does integral[ y^3] = 3y^2 y' ???
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): not 100% sure if I did that right. I tried following the example in the book ------------------------------------------------ ------------------------------------------------ Self-critique rating: ********************************************* ********************************************* Question: 3.2.24. Solve the equation y ' = (y^2 + 2 y + 1) sin(t) fand determine the t interval over which he solution exists. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y' / (y^2 + 2y + 1) = sin(t) integrate I don't know how to integrate 1/(y^2 + 2y + 1) I thought I could do u sub, but then I'd get u = y^2 + 2y + 1 and du = 2y +2 and that's not helpful then I thought of the power rule (y^2 + 2y + 1)^(-1) but then I'd end up with ln (y^2 + 2y + 1) / (2y+2) how is this done??? @& You made a couple of good tries. Factor the denominator, which gives you a perfect square. Then do what should be an obvious u substitution. In general, had the quadratic not factored into a perfect square, you would try to factor and use partial fractions, or alternatively complete the square. These are standard first-year calculus techniques, and you should review them. *@ - y / (y+1) = -cos(t) y = cos(t) * (y +1) solution exists from (- infin., + infin.) #### y' = (y+1)^2 sin(t) y' (1/(y+1)^2) = sin(t) integrate -1/(y+1) = -cos(t) + C y+ 1 = sec(t) + C y = sec(t) -1 + C The equation exists everywhere except when cos(t) = 0
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): just not sure about integrating still ------------------------------------------------ ------------------------------------------------ Self-critique rating: ********************************************* ********************************************* Question: 3.2.28. Match the graphs of the solution curves with the equations y ' = - y^2, y ' = y^3 an dy ' = y ( 4 - y). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For me this is problem 30 in section 2.7 I'm not at all sure how to solve for this problem. Just by looking at the graphs I think y' = y^3 is graph B, only because it looks like a x^3 equation. By the same reasoning I think y' = -y^2 is graph A and y' = y(4-y) is graph C I should be able to solve these and then match with the graphs y' = y^3 integrate y = 1/4 y^4 But that doesn't look like any of these graphs I don't think I fully understand this question ??? y' = -y^2 integrate y = -1/3 y^3, this sorta looks like graph B, but it's facing the wrong way y' = 4y - y^2 integrate y = 2y^2 -1/3 y^3, this doesn't really look like any of the graphs either. @& According to the graphs in the book: y'=-y^2 --> Graph C Concave up, asymptote at t = -1 and approaching 0 as t-> inf y'= y^3 --> Graph A Concave up but flipped of A with y --> 0 as t --> -inf and an asymptote at t= 1/2 y'= y(4-y) --> Graph B For one, by exclusion but also because slope of y'-->0 as y--> 4 and y' --> 0 as y --> -inf *@ #### I don't understand what you did here. The graph is -y^2 is an upside down parabola, which is concave down. It also does not have an asymptote or approach 0 as t goes to infinity. y^3 also does not have an asymptote. If I make a slope segment diagram for all of these, the slope does not depend on the variable t. Therefore the slopes will be the same across each horizontal line. What exactly are you graphing??? #### confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ???? ------------------------------------------------ ------------------------------------------------ Self-critique rating: "" &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ ------------------------------------------------ Self-critique rating: @& Check my notes. You are using appropriate techniques for solving the equations, but as I believe you recognize you are running into problems with integration. The only remedy is practice on integration. There are numerous web resources. *@ added notes with ####" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: @& Check my notes. You are using appropriate techniques for solving the equations, but as I believe you recognize you are running into problems with integration. The only remedy is practice on integration. There are numerous web resources. *@ added notes with ####" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!