query 16

#$&*

course Mth 279

7/22 8:14 pm

Query 16 Differential Equations*********************************************

Question:  Find the general solution to

y '' - 5 y ' + 2 y = 0

and the unique solution for the initial conditions y (0) = -1, y ' (0) = -5.

How does the solution behave as t -> infinity, and as t -> -infinity>?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

y^2 - 5y + 5 = 0

this is not factorable, must use

y = [-b +- sqrt(b^2 - 4ac)]/(2a)

y = [5+- sqrt( 25- 4(1)(5))]/2

y1 = [5+ sqrt(17)]/2

y2 = [5 - sqrt(17)]/2

y = c1 e^([5+ sqrt(17)]/2 t) + c2 e^([5 - sqrt(17)]/2 t)

initial conditions

-1 = c1 + c2

-1 - c2 = c1

y' = [5 + sqrt(17)]/2 c1 e^([5+ sqrt(17)]/2 t) + [5 - sqrt(17)]/2 c2 e^([5 - sqrt(17)]/2 t)

-5 = [5 + sqrt(17)]/2 c1 + [5 - sqrt(17)]/2 c2

-5 = [-5 - sqrt(17)]/2 c2 +  [5- sqrt(17)]/2 c2 - [5+ sqrt(17)]/2

-5 = -2*sqrt(17)/2 c2 - [5+ sqrt(17)]/2

-5 + [5 + sqrt(17)]/2 = -sqrt(17) c2

c2 = 5/sqrt(17) - 5/[2*sqrt(17)] + 1/2

c1 = -5/sqrt(17) + 5/[2*sqrt(17)] + 1/2 - 1

c1 = -5/sqrt(17) + 5/[2*sqrt(17)] - 1/2

y = [-5/sqrt(17) + 5/[2*sqrt(17)] - 1/2 ] e^([5+ sqrt(17)]/2 t) +[ 5/sqrt(17) - 5/[2*sqrt(17)] + 1/2 ] e^([5 - sqrt(17)]/2 t)

 

@&

You didn't mention the limits.

Rationalizing the denominators to get standard form we get

c1 = -1/2 - 5 sqrt(17) /34

c2 = -1/2 + 5 sqrt(17) /34

Approximate values are

c1 = -1.1

c2 = 0.1

yielding approximate solution

y = -1.1e^(1/2(5+ sqrt 17)t) + 0.1 *e^(1/2(5 - sqrt 17)t)

As t -> infinity the exponents of both both terms remain positive and become large, with the negative term having the greater magnitude; as a result the limit is -infinity.

As t -> - infinity both exponents approach -infinity so both terms approach zero, resulting in a limit of zero.

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 

------------------------------------------------

Self-critique rating:

*********************************************

Question:  Find the general solution to

8 y '' - 6 y ' + y = 0

and the unique solution for the initial conditions y (1) = 4, y ' (1) = 3/2.

How does the solution behave as t -> infinity, and as t -> -infinity>?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 (2y-1)(4y-1)

y1 = 1/2

y2 = 1/4

y = c1 e^(1/2 t) + c2 e^(1/4 t)

initial condition

4 = c1 e^(1/2) + c2 e^(1/4)

4 - c2 e^(1/4) = c1 e^(1/2)

4 e^(-1/2) - c2 e^(-1/4) = c1

y' = 1/2 c1 e^(1/2 t) + 1/4 c2 e^(1/4 t)

3/2 = 1/2 c1 e^(1/2) + 1/4 c2 e^(1/4)

plug in c1

3/2 = 1/2(4 e^(-1/2) - c2e^(-1/4) ) e^(1/2) + 1/4 c2 e^(1/4)

3/2 = 2- 1/2 c2 e^(1/4) + 1/4 c2 e^(1/4)

-1/2 = c2 e^(1/4) (-1/4)

2 = c2 e^(1/4)

c2 = 2e^(-1/4)

y = 2e^(-1/2 ) * e^(1/2 t) + 2e^(-1/4) * e^(1/4t)

y = 2e^(1/2 t - 1/2) + 2 e^(1/4 t - 1/4)

As t approaches infinity, y approaches infinity

As t approaches negative infinity, y approaches negative infinity

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 

------------------------------------------------

Self-critique rating:

*********************************************

Question:  Solve the equation

m ( r '' - Omega^2 r) = - k r '  for r(0) = 0, r ' (0) = v_0.

Omega is the angular velocity of a centrifuge, m is the mass of a particle and k is drag force constant.  Physics students will recognize that m r Omega^2 is the centripetal force required to keep an object of mass m moving in a circle of radius r at angular velocity Omega.

The equation models the motion of a particle at the axis which is given initial radial velocity v_0.

The mass m of a particle is proportional to its volume, while the drag constant is proportional to its cross-sectional area.  Assuming all particles are geometrically similar (and most likely spherical, though this is not necessary as long as they are geometrically similar, but for the sake of an accurate experiment spheres would be preferable), how then does k / m change as the diameter of particles increases?

If Omega = 20 revolutions / minute and v_0 = 1 cm / second, with k / m = 4 s^-1, find r( 2 seconds ).

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 

 Because we know mass is proportional to volume, that means it is also proportional to d^3.

By the same logic, k is proportional to d^2

k/m = [constant] d^2/d^3 = 1/d

As the diameter increases, k/m decreases. They are inversely proportional.

r'' - omega^2 r = -k/m r'

r'' - k/m r' - omega^2 r = 0

@&

To make the units consistent omega would have to be in radians / second.

20 rev / minute is 20 * 2 pi radians / (60 second) = 2 pi / 3 rad / sec.

The equation would be

r '' + 4 r ' - (2 pi/3)^2 r = 0

which would change your numbers.

You did well but the conversion of omega is necessary, and k/m r ' becomes positive when you add it to both sides.

*@

y1 = 2 + sqrt(384) *i/2

y2 = 2- sqrt(384) *i/2

y = e^(2t) cos(sqrt(384)* t) + e^(2t) sin(sqrt(384)*t)

@&

If you solve the equation in symbols you get

r(t) = A e^( (-k / (2 m) ( 1 + sqrt( 1 + 4 m^2 omega^2 / k^2) ) * t ) + B e^( (-k / (2 m) ( 1 - sqrt( 1 + 4 m^2 omega^2 / k^2) ) * t ).

We can evaluate the factor 1 + 4 m^2 omega^2 / k^2:

1 + 4 m^2 omega^2 / k^2 =

1 + 4 (m / k)^2 * omega^2 =

1 + 4 omega^2 / (k/m)^2 =

1 + 4 (2 pi / 3 s^-1)^2 / (4 s^-1)^2 =

1 + pi^2 / 9,

so that

sqrt( 1 + 4 m^2 omega^2 / k^2) = sqrt( 1 + pi^2 / 9) = 1.45, approx..

*@

@&

Evaluating the rest of the constants for the given initial conditions we finally get approximated solutions

r(t) = -.17 e^(-4.9 t) + .17 e^(.9 t)

and

r(2) = 1.03 cm.

*@

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good responses. See my notes and let me know if you have questions. &#