query 17

#$&*

course Mth 279

7/22 9:21 pm

Query 17 Differential Equations*********************************************

Question:  Solve the equation

25 y '' + 20 y ' + 4 y = 0, y(5) = 4 e^-2, y ' (5) = -3/5 e^-2

with y(5) = 4 e^-2 and y ' (5) = -3/5 e^-2.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 

 25y^2 + 20y +4 = 0

(5y +2)^2 = 0

y = c1 e^(-2/5 t) + c2 t e^(-2/5 t)

NOTE, because the equation is continuous at all points, I was able to simply multiply t by y1 to get y2

If it was not continuous, I would have used reduction of order

initial conditions:

4e^(-2) = c1 e^(-2) + 5c2 e^(-2)

@&

y = c1 e^(-2/5 t) + c2 t e^(-2/5 t)

so

y(5) = y = c1 e^(-2t) + c2 * 5 * e^(-2).

*@

4 = c1 + 5c2

c1 = 4-5c2

y' = -2/5 c1 e^(-2/5 t) + c2 e^(-2/5 t) - 2/5 t e^(-2/5 t)

-3/5 e^(-2) = -2/5 c1 e^(-2) + c2 e^(-2) - 2e^(-2) c2

-3/5 = -2/5 c1 - c2

-3/5 = -2/5 (4-5 c2) - c2

-3/5 = -8/5 + 10/5 c2 - c2

1 = 2c2 - c2

c2 = 1

plugging into equation for c1

4-5 = c1

c1 = -1

y = -e^(-2/5 t) + t e^(-2/5 t)

@&

Good, but your constants aren't quite right; check my note.

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 

------------------------------------------------

Self-critique rating:

*********************************************

Question:  Solve the equation

3 y '' + 2 sqrt(3) y ' + y = 0, y(0) = 2 sqrt(3), y ' (0) = 3

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 

 3y^2 + 2sqrt(3) y + 1 = 0

(sqrt(3) y +1)^2 = 0

because this equation exists at all points, I don't have to go through reduction

y = c1 e^(-1/sqrt(3) t) + c2 t e^(-1/sqrt(3) t)

initial conditions

2 sqrt(3) = c1 + 0

c1 = 2*sqrt(3)

y' = -1/sqrt(3) c1 e^(-1/sqrt(3) t) + c2 e^(-1/sqrt(3) t) - 1/sqrt(3) c2 t e^(-1/sqrt(3) t )

initial conditions

3 = -1/sqrt(3) c1 + c2

3 = -1/sqrt(3) (2* sqrt(3)) + c2

3 = -2 + c2

c2 = 5

y = 2*sqrt(3) e^(-1/sqrt(3) t) + 5t e^(-1/sqrt(3) t)

@&

You missed that factor t again. Otherwise very good.

*@

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 

------------------------------------------------

Self-critique rating:

*********************************************

Question:  Solve the equation

y '' - 2 cot(t) y ' + (1 + 2 cot^2 t) y = 0,

which has known solution y_1(t) = sin(t)

You will use reduction of order, find intervals of definition and interval(s) where the Wronskian is continuous and nonzero.  See your text for a more complete statement of this problem.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 because this cannot easily be factored and does not exist everywhere, I must use method of reduction

y2 = y1*u

y2 = u sin(t)

y2' = u' sin(t) + ucos(t)

y2'' = u'' sin(t) - u sin(t)

@&

y2'' = ( u' sin(t) + ucos(t) ) ' = u '' sin(t) + u ' cos(t) + u ' cos(t) - u sin(t) = u '' + 2 u ' cos(t) - u sin(t)

*@

plugging into original equation

u'' sin - u sin - 2 cos/sin (u' sin + u cos) + (1 + 2cos^2/sin^2 ) usin = 0

u'' sin - usin - 2u'cos - 2 u cos^2/sin + usin + 2u cos^2/sin = 0

u'' sin - 2u cos = 0

using v = u' to make it easier to solve

v' sin - 2v cos = 0

separable first order

v' 1/(2v) = cos/sin

1/2 lnv = ln(sin) + C1

1/2 v = sin(t) + C1

v = 2 sin(t) + C1

*** I don't know what happens with these constants. The book gives an explanation but I don't understand how the constants are eliminated

u = -2 cos(t) + C2

to make sure the solution is right, I do the wronskian

W = [ sin(t) -2cos(t),

cos(t) 2sin(t)]

W = 2sin^2(t) + 2cos^2(t)

W = 2 which does not equal 0!

solution becomes

y = c1 sin(t) + c2 cos(t)

The first equation exists everywhere except integer multiples of pi (pi, 2pi, 3pi, etc.)

The solution exists everywhere, and the wronskian exists everywhere

@&

Compare with the following:

We begin by letting y_2(t) = u(t) * y_1(t), so that

y_2 ' = u ' * y_1 + u * y_1 ' = u ' sin(t) + u cos(t)

and

y_2 '' = u'' * y_1 + 2 u ' * y_1 ' + u y_1 ''

= u '' * sin(t) + 2 u ' * cos(t) - u * sin(t).

Our equation becomes

u'' * y_1 + 2 u ' * y_1 ' + u y_1 '' - 2 cot(t) (u ' * y_1 + u * y_1 ') + (1 + 2 cot^2(t)) * u y_1 = 0

which can be rearranged to yield

[ u y_1 '' - 2 cot(t) * u y_1 ' + (1 + 2 cot^2(t)) * u y_1 ] + u '' y_1 + u ' ( 2 y_1 - 2 cot(t) y_1) = 0.

The terms in brackets can be expressed as u ( y_1 '' - 2 cot(t) * y_1 ' +(1 + 2 cot(t)^2) y_1); since y_1 is a solution to our original equation these terms therefore add up to zero.

This leaves us with

u '' + 2 u ' y_1 (1 - cot(t)) = 0.

or substituting y_1 = sin(t)

u '' + 2 u ' sin(t) ( 1 - cot(t)) = 0.

cot(t) = cos(t) / sin(t), and our equation for u becomes

u '' + 2 (sin(t) - cos(t) ) u' = 0.

Letting v = u ' our equation is

v ' + 2 ( sin(t) - cos(t) ) v = 0.

This is a first-order linear equation, solvable for v. The solution is integrated to find u, and our solution is y = u * y_1 = u * sin(t).

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

________________________________________

#$&*

&#This looks good. See my notes. Let me know if you have any questions. &#