#$&* course Mth 279 4:44 pm 8/6 Query 22 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the limit as t -> 0 of the matrix [ sin(t) / t, t cos(t), 3 / (t + 1); e^(3 t), sec(t), 2 t / (t^2 - 1) ] pictured as YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To find the limit of the matrix, take the limit of each element [1, 0, 3; 1, 1, infinity]
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find A ' (t) and A ''(t), where the derivatives are with respect to t and the matrix is A = [ sin(t), 3 t; t^2 + 2, 5 ] pictured as YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Taking derivative of each element A' = [cos(t), 3; 2t, 0] A'' = [-sin(t), 0; 2, 0] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Write the system of equations y_1 ' = t^2 y_1 + 3 y_2 + sec(t) y_2 ' = sin(t) y _1 + t y_2 - 5 in the form y ' = P(t) y + g(t), where P(t) is a 2 x 2 matrix and y and g(t) are 2 x 1 column vectors. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: P(t) = [t^2, 3; sin(t), t] g(t) = [sec(t); -5] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: If A '' = [1, t; 0, 0] with A(0) = [ 1, 1; -2, 1] A(1) = [-1, 2; -2, 3 ] then what is the matrix A(t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Not sure if this was the way I was supposed to do it A' = [t, 1/2 t^2; 0, 0] + [C1, C2; C3, C4] A = [1/2 t^2, 1/6 t^3; 0, 0] + [C1*t, C2*t; C3*t, C4*t] + [D1, D2; D3, D4] A(0) = [ 1, 1; -2, 1] = [ 0, 0; 0, 0] +[ 0, 0; 0, 0] + [D1, D2; D3, D4] D1 = 1 D2 = 1 D3 = -2 D4 = 1 A(1) = [-1, 2; -2, 3 ] = [1/2, 1/6; 0, 0] + [C1, C2; C3, C4] + [1, 1; -2, 1] -1 = 1/2 + C1 + 1 C1 = -5/2 2 = 1/6 + C2 + 1 C2 = 5/6 -2 = 0 + C3 - 2 C3 = 0 3 = 0 + C4 + 1 C4 = 2 A = [1/2 t^2 - 5/2 *t, 1/6 t^3 + 5/6 *t + 1; -2, 2t + 1] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the matrix A(t), defined by A(t) = integral( B(s) ds, s from 0 to t), where B = [ e^s, 6s; cos(2 pi s), sin(2 pi s) ]. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: integral [e^s ds] from 0 to t e^t- e^0 = e^t - 1 integral[ 6s ds] from 0 to t 3t^2 - 0 = 3t^2 integral[ cos(2pi*s) ds] from 0 to t 1/(2pi) sin(2pi*t) - 0 = 1/(2pi) sin(2pi*t) integral[sin(2pi*s) ds] from 0 to t -1/(2pi) cos(2pi*t) + 1/(2pi) cos(0) = -1/(2pi) cos(2pi*t) + 1/(2pi) A = [e^(t) - 1, 3t^2; 1/(2pi) sin(2pi*t), -1/(2pi) c os(2pi*t) + 1/(2pi)] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!