#$&* course Mth 279 RESUBMISSON. I submitted this I think last week along with Query 21, I do have the form confirmation, but I think it just got missed somehow. Also, thank you very much for the continued support. I should have a stream of assignments coming your way soon.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Using variation of parameters, solve the equation y '' + 36 y = csc^3 ( 6 t ). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y^2 + 36 = 0 y1 = 6i yc = c1 cos(6t) + c2 sin(6t) yp = y1u1 + y2u2 y1u1' + y2u2' = 0 y1'u1' + y2'u2' = csc^3(6t) [cos(6t) sin6(t), -6sin(6t) 6cos(6t)] * [u1' u2'] = [0, csc^3(6t)] 6cos^2(6t) + 6 sin^2(6t) = 6 [u1', u2'] = 1/6 * [6cos(6t) -sin(6t), 6sin(6t) cos(6t)] u1' = -1/6 sin(6t) csc^3(6t) u2' = 1/6 cos(6t) csc^3(6t) I don't think I did this integral right integral [-1/6 csc^2(6t)] u substitution u = csc(6t) du = 6cot(6t) -1/6 (6cot(6t)) integral[u^2] -cot(6t) [1/3 u^3] -1/3 cot(6t)csc^3(6t) = u1 u2 = integral[1/6 cos(6t) csc^3(6t)] using csc^2 = 1 + cot^2 u2 = integral [ 1/6 cot(6t)(1 + cot^2(6t)) u2 = integral [ 1/6 cot(6t) + cot^4(6t)] u2 = 1/6 (1/6) csc(6t) + 1/5 cot^5(6t) y = c1 cos(6t) + c2 sin(6t) + -1/3 cot(6t)csc^3(6t) + 1/36 csc(6t) + 1/5 cot^5(6t) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I don't remember how to integrate things like cot^4 or csc^2 ------------------------------------------------ Self-critique rating: