course phy 202
ph2 query 0Most queries in this course will ask you questions about class notes, readings, text problems and experiments. Since the first two assignments have been lab-related, the first two queries are related to the those exercises. While the remaining queries in this course are in question-answer format, the first two will be in the form of open-ended questions. Interpret these questions and answer them as best you can.
Different first-semester courses address the issues of experimental precision, experimental error, reporting of results and analysis in different ways and at different levels. One purpose of these initial lab exercises is to familiarize your instructor with your work and you with the instructor 's expectations.
Comment on your experience with the three lab exercises you encountered in this assignment or in recent assignments.
Had completed them in PHY 201 and there was no need to repeat.
*********************************************
Question: This question, related to the use of the TIMER program in an experimental situation, is posed in terms of a familiar first-semester system.
Suppose you use a computer timer to time a steel ball 1 inch in diameter rolling down a straight wooden incline about 50 cm long. If the computer timer indicates that on five trials the times of an object down an incline are 2.42sec, 2.56 sec, 2.38 sec, 2.47 sec and 2.31 sec, then to what extent do you think the discrepancies could be explained by each of the following:
• The lack of precision of the TIMER program.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Rounding the time to a certain decimal place, human error in hitting the button, human error in not placing the steel ball in the same initial position for every trial.
• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Will never get the exact same time for multiple situations if human triggering is involved. Either because of hand-eye coordination, or reaction of clicking to registering through the program.
• Actual differences in the time required for the object to travel the same distance.
To what extent to you think the discrepancies are explained by this factor?
Your answer: Different initial and/or final positions.
• Differences in positioning the object prior to release.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Already stated…
• Human uncertainty in observing exactly when the object reached the end of the incline.
To what extent to you think the discrepancies are explained by this factor?
Your answer: Already stated…
*********************************************
Question: How much uncertainty do you think each of the following would actually contribute to the uncertainty in timing a number of trials for the ball-down-an-incline lab?
• The lack of precision of the TIMER program.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Major contributor to certain data trying to be obtained. In actuality it probably will not change the outcome too significantly to worry. Can minimize the error by doing more and more trials of the experiment.
• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Major contributor to certain data trying to be obtained. In actuality it probably will not change the outcome too significantly to worry. Can minimize the error by doing more and more trials of the experiment.
• Actual differences in the time required for the object to travel the same distance.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Major contributor to certain data trying to be obtained. In actuality it probably will not change the outcome too significantly to worry. Can minimize the error by doing more and more trials of the experiment.
• Differences in positioning the object prior to release.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Major contributor to certain data trying to be obtained. In actuality it probably will not change the outcome too significantly to worry. Can minimize the error by doing more and more trials of the experiment.
• Human uncertainty in observing exactly when the object reached the end of the incline.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Major contributor to certain data trying to be obtained. In actuality it probably will not change the outcome too significantly to worry. Can minimize the error by doing more and more trials of the experiment.
*********************************************
Question: What, if anything, could you do about the uncertainty due to each of the following? Address each specifically.
• The lack of precision of the TIMER program.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Multiple trials to get an average of the times.
• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Construct a mechanism to start timing when the ball is released.
• Actual differences in the time required for the object to travel the same distance.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Relates to the next questions…
• Differences in positioning the object prior to release.
What do you think you could do about the uncertainty due to this factor?
Your answer: Have a back of the ramp to place the ball against so there is a single starting point for every trial.
• Human uncertainty in observing exactly when the object reached the end of the incline.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Could also have a stopper at the end of the ramp to know when it has completed the run every time.
"
This looks good. Let me know if you have any questions.