Query 2

course phy 202

002. `query 2vvvv

*********************************************

Question: from Introductory Problem Set 5 # 12: Finding the conductivity given rate of energy flow, area, temperatures, thickness of wall.

Describe how we find the conductivity given the rate of energy flow, area, temperatures, and thickness of the wall.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

This is the rate of conduction divided by the area and the gradient.

C = [rate of energy(‘dQ)] / [area * ‘dT]

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The rate at which thermal energy is conducted across for a object made of a given substance is proportional to the temperature gradient (the rate at which temperature changes across the object), and to the cross-sectional area of the object.

The conductivity is the constant of proportionality for the given substance. So we have the proportionality equation

• rate of thermal energy conduction = conductivity * temperature gradient * area, or in symbols

• R = k * (`dT/`dx) * A.

(note: R is the rate at which thermal energy Q is transferred with respect to clock time t. Using the definition of rate of change, we see that the average rate over a time interval is `dQ / `dt, and the instantaneous rate is dQ / dt. Either expression may be used in place of R, as appropriate to the situation.)

For an object of uniform cross-section, `dT is the temperature difference across the object and `dx is the distance between the faces of the object. The distance `dx is often denoted L. Using L instead of `dx, the preceding proportionality can be written

• R = k * `dT / L * A

We can solve this equation for the proportionality constant k to get

• k = R * L / (`dT * A).

(alternatively this may be expressed as k = `dQ / `dt * L / (`dT * A), or as k = dQ/dt * L / (`dT * A)).

Your Self-Critique: I understand

Your Self-Critique Rating: 3

*********************************************

Question: Explain in terms of proportionalities how thermal energy flow, for a given material, is affected by area (e.g., is it proportional to area, inversely proportional, etc.), thickness and temperature gradient.

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Directly proportional to all

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** CORRECT STUDENT ANSWER WITHOUT EXPLANATION:

Energy flow is:

• directly proportional to area

• inversely propportional to thicknessand

• directly proportional to temperature gradient

Good student answer, slightly edited by instructor:

The energy flow for a given object increases if the cross-sectional area (i.e., the area perpendicular to the direction of energy flow) increases. Intuitively, this is because the more area you have the wider the path available so more stuff can move through it. By analogy a 4 lane highway will carry more cars in a given time interval than will a two lane highway. In a similar manner, energy flow is directly proportional to cross-sectional area.

Temperature gradient is the rate at which temperature changes with respect to position as we move from one side of the material to the other. That is, temperature gradient is the difference in temperature per unit of distance across the material:

• temperature gradient is `dT / `dx.

(a common error is to interpret temperature gradient just as difference in temperatures, rather than temperature difference per unit of distance).

For a given cross-sectional area, energy flow is proportional to the temperature gradient. If the difference in the two temperatures is greater then the energy will move more quickly from one side to the other.

For a given temperature difference, greater thickness `dx implies smaller temperature gradient `dT / `dx. The temperature gradient is what 'drives' the energy flow. Thus

greater thickness implies a lesser temperature gradient

the lesser temperature gradient implies less energy flow (per unit of cross-sectional area) per unit of time and we can say that

the rate of energy flow (with respect to time) is inversely proportional to the thickness.

Your Self-Critique:

‘dt / ‘dx; therefore I was wrong in assuming that it is directly proportional to wall thickness. I understand now.

Your Self-Critique Rating: 2

*********************************************

Question: principles of physics and general college physics 13.8: coeff of expansion .2 * 10^-6 C^-1, length 2.0 m. What is expansion along length if temp increases by 5.0 C?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

INVAR: ‘dL = (.2*10^-6 / C)(2.0 m)(5 C) = 2.0*10^-6 m expansion

STEEL: ‘dL = (12*10^-6 / C)(2.0 m)(5 C) = 1.2*10^-4 m expansion

Confidence Rating: 3

.............................................

Given Solution:

This problem is solved using the concept of a coefficient of expansion.

The linear coefficient of thermal expansion of a material, denoted alpha, is the amount of expansion per unit of length, per unit of temperature:

• expansion per unit of length is just (change in length) / (original length), i.e.,

• expansion per unit of length = `dL / L0

Thus expansion per unit of length, per unit of temperature is (expansion per unit of length) / `dT. Denoting this quantity alpha we have

• alpha = (`dL / L0) / `dT. This is the 'explanatory form' of the coefficient of expansion. In algebraically simplified form this is

• alpha = `dL / (L0 * `dT).

In this problem we want to find the amount of the expansion. If we understand the concept of the coefficient of expansion, we understand that the amount of the expansion is the product of the coefficient of expansion, the original length and the temperature difference: If we don’t completely understand the idea, or even if we do understand it and want to confirm our understanding, we can solve the formula alpha = `dL / (L0 * `dT) for `dL and plug in our information:

• `dL = alpha * L0 * `dT = .2 * 10^-6 C^(-1) * 2.0 m * 5.0 C = 2 * 10^-6 m.

This is 2 microns, two one-thousandths of a millimeter.

By contrast the coefficient of expansion of steel is 12 * 10^-6 C^(-1); using this coefficient of expansion yields a change in length of 1.2 * 10^-4 m, or 120 microns, which is 60 times as much as for the given alloy.

Your Self-Critique: Understood

Your Self-Critique Rating: 3

*********************************************

Question: query general phy 13.12: what is the coefficient of volume expansion for quartz, and by how much does the volume change? (Note that Principles of Physics and University Physics students do not do General Physics problems)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

‘dV = B(Vo)(‘dT) = (1*10^-6)[(4/3)*pi(8.75/2)^3](170) = 5.96*10^-2 cm^3

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The coefficient of volume expansion for quartz is 1 x 10^(-6) C^(-1).

The sphere has diameter 8.75 cm, so its volume is 4/3 pi r^3 = 4/3 pi ( 4.38 cm)^3 = 352 cm^3, approx..

The coefficient of volume expansion is the proportionality constant beta in the relationship `dV = beta * V0 * `dT (completely analogous to the concept of a coefficient of linear expansion).

We therefore have

`dV = beta* V0*dT = 3 x 10^(-6) C^ (-1) * 352 cm^3 * (200C - 30 C) = 0.06 cm^3 **

STUDENT COMMENT:

Similar to length an increase in temp. causes the molecules that make up this substance to move faster and that is the cause of expansion?

INSTRUCTOR RESPONSE:

At the level of this course, I believe that's the best way to think of it.

There is a deeper reason, which comes from to quantum mechanics, but that's is way beyond the scope of this course.

Your Self-Critique: Understood

Your Self-Critique Rating: 3

*********************************************

Question: query univ 17.103 (15.93 10th edition) (Note that Principles of Physics and General College Physics students don't do University Physics problems).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution: PHY 202

confidence rating: 202

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Let Tf be the final temperature of the system.

The ice doesn't change temperature until it's melted. It melts at 0 Celsius, and is in the form of water as its temperature rises from 0 C to Tf.

Assuming that all the steam condenses, it releases .0350 kg * 2.256 * 10^6 J / kg of thermal energy into the rest of the system. The system will then come to temperature Tf so its change in thermal energy after being condensing to water will be 4186 J / (kg K) * .035 kg * (Tf - 100 C).

The sum of all the thermal energy changes is zero, so we have the equation

[.446 kg * 390 J/kg*K * (Tf - 0 C)] + [0.0950 kg * 4186 J/kg*K *(Tf - 0 C)] - .0350 kg * 2.256 x 10^6 J/kg + 4186 J / (kg K) * .035 kg * (Tf - 100 C) = 0.

Noting that change in temperature of a Kelvin degree is identical to a change of a Celsius degree we get

170 J/C * Tf + 390 J/C * Tf - 79000 J - 14000 J + 140 J / C * Tf = 0 or

700 J / C * Tf = 93000 J, approx. or

Tf = 130 C.

This isn't possible—the system can’t possibly end up warmer than the original temperature of the steam.

This solution was based on the assumption that all the steam condenses. We conclude that not all the steam condenses and that the system therefore reaches equilibrium at 100 C, so that in the end we therefore have a mixture of water and steam. We let mCondensed stand for the mass of the condensed steam. Energy conservation gives us

[.446 kg * 390 J/kg*C * (100 C - 0 C)] + [0.0950 kg * 4186 J/kg*C *(100 C - 0 C)] - mCondensed * 2.256 x 10^6 J/kg = 0

Thus

17000 J + 39000 J - mCondensed * 2.3 * 10^6 J/kg = 0 or

mCondensed = 56000 J / (2.3 * 10^6 J/kg) = .023 kg.

We end up with

.095 kg * .023 kg = .118 kg of water and

.035 kg - .023 kg = .012 kg of steam

all at 100 C. **

Your Self-Critique: PHY 202

Your Self-Critique Rating: PHY 202

*********************************************

Question: query univ phy 17.100 (90 in 10th edition): C = 29.5 J/mol K + (8.2 + 10^-3 J/mol K^2) T .

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution: PHY 202

confidence rating: 202

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** In this case the specific heat is not constant but varies with temperature.

The energy required to raise the temperature of 3 moles by `dT degrees (where `dT is considered to be small enough that the change in specific heat is insignificant) while at average temperature T is `dQ = 3 mol * C * dT = 3 mol * (29.5 J/mol K + (8.2 * 10^-3 J/mol K^2) T) * `dT.

To get the energy required for the given large change in temperature (which does involve a significant change in specific heat) we integrate this expression from T= 27 C to T = 227 C, i.e., from 300 K to 500 K.

An antiderivative of f(t) = (29.5 J/mol K + (8.2 + 10^-3 J/mol K^2) T) is F(T) = 29.5 J / (mol K) * T + (8.2 + 10^-3 J/mol K^2) * T^2 / 2. We simplify and apply the Fundamental Theorem of Calculus and obtain F(500 K) - F(300 K). This result is then multiplied by the constant 3 moles.

The result for Kelvin temperatures is about 3 moles * (F(500 K) – F(300 K) = 20,000 Joules. **

Your Self-Critique: PHY 202

Your Self-Critique Rating: PHY 202

*********************************************

Question: University Physics Problem 17.106 (10th edition 15.96):

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution: PHY 202

confidence rating: 202

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

**The final mass of the system is .525 kg, meaning that .525 kg - (.340 kg + .150 kg) = .035 kg of steam condensed then cooled to 71 C.

The thermal energy change of the calorimeter plus the water is .150 kg * 420 J/(kg C) * 56 C + .34 kg * 4187 J / (kg C) * 56 C = 83,250 J, approx.

The thermal energy change of the condensed water is -Hf * .035 kg + .035 kg * 4187 J / (kg C) * (-29 C) = -Hf * .035 kg - 2930 J, approx.

Net thermal energy change is zero, so we have

• 83,250 J - Hf * .035 kg - 4930 J = 0 which is easily solved to give us

• Hf = 79,000 J / (.035 kg) = 2,257,000 J / kg. **

"

vvvv

&#Very good work. Let me know if you have questions. &#