Query 3

course phy 202

9/22 14:30

Your solution, attempt at solution:If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

*********************************************

Question: query intro set problem 14 substance, water, both temperatures and masses known, final temperature known, find spec ht

Explain how the final temperature of the system is combined with the known initial temperatures and masses of both substances to obtain the unknown specific heat

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

Specific Heat (c) is the Thermal Energy per unit mass, per degree and it is given for water (4186 J/kg*C). The sum of the energy losses of each substance in the system should equal zero. This is because the heat loss from the water is transferred to the heat gain of the unknown substance. Therefore, find the total heat loss for the given substance and divide by the mass and temperature change of the unknown substance, to leave the Specific Heat of that unknown substance.

12kg(4186 J/kg*C)(86.45834 – 90) + 5kg(x)(86.45834 – 5) = 0

(50232 J/C)(-3.54166C) = -(5kg(x)(81.45834C))

-177,904.6651 J = -(407.2917 kg*C)(x)

x = 177,904.6651 J / 407.2917 kg*c

x = 436.8 J/kg*C

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The change in the thermal energy of an isolated system is 0. So assuming that the systems are isolated the thermal energy change of one object is equal and opposite to that of the other.

For an ideal substance the change in the thermal energy of an object is directly proportional to the change in its temperature and to its mass (i.e., more mass and more change in temperature implies more change in thermal energy). The specific heat is the proportionality constant for the substance. Using `dQ for the change in the thermal energy of an object we can express this as

• `dQ = mass * specific heat * `dT.

(General College and University Physics students note that most substances do not quite behave in this ideal fashion; for most substances the specific heat is not in fact strictly constant and for most substances changes with temperature.)

For two objects combined in a closed system we have `dQ1 + `dQ2 = 0, which gives us the equation

• m1 c1 `dT1 + m2 c2 `dT2 = 0

or equivalently

• m1 c1 `dT1 = - m2 c2 `dT2.

That is, whatever energy one substance loses, the other gains.

In this situation we know the specific heat of water, the two temperature changes and the two masses. We can therefore solve this equation for specific heat c2 of the unknown substance. **

Your Self-Critique: Luckily I have already taken Thermodynamics…

Your Self-Critique Rating: 3

*********************************************

Question: prin phy Ch 13.26. Kelvin temperatures corresponding to 86 C, 78 F, -100 C, 5500 C and -459 F.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution: phy 202

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The Kelvin temperature is 273 K higher than the Celsius temperature (actually 273.15 below, but the degree of precision in the given temperatures is not sufficient to merit consideration of tenths or hundredths of a degree).

• 86 C, -100 C and 5500 C are therefore equivalent to ( 86 + 273 ) K = 359 K, -(100 + 273) K = 373 K, (5500 + 273) K = 5773 K.

The freezing point of water is 0 C or 32 F, and a Fahrenheit degree is 5/9 the size of a Celsius degree. Therefore

• 78 F is (78 F - 32 F) = 46 F above the freezing point of water.

• 46 Fahrenheit degrees is the same as (5/9 C / F ) * 46 F = 26 C above freezing.

• Since freezing is at 0 C, this means that the temperature is 26 C.

• The Kelvin temperature is therefore (26 + 273) K = 299 K.

Similar reasoning can be used to convert -459 F to Celsius

• -459 F is (459 + 32) F = 491 F below freezing, or (5/9 C / F) * (-491 F) = 273 C below freezing.

• This is -273 C or (-273 + 273) K = 0 K.

• This is absolute zero, to the nearest degree.

Your Self-Critique: phy 202

Your Self-Critique Rating: 3

*********************************************

Question: prin phy and gen phy Ch 13.30 air at 20 C is compressed to 1/9 of its original volume. Estimate the temperature of the compressed air assuming the pressure reaches 40 atm.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

I’d use the PV=nRT formula since I was given pressure, volume, and temperature. Another observation is that both situations obtain the same substance, water. Therefore, n and R can be left out since they are constant throughout. This gives us PV=T for each situation. To find the missing final temperature, we’ll set these two equations equal to each other and simply fill in the blanks.

(P1 * V1)/T1 = (P2 * V2)/T2

We know that T1 = 20, V1 = 9 * V2, and P2 = 40 * P1.

T2 = (T1 * P2 * V2)/(P1 * V1)

T2 = (20 * (40*P1) * V2) / (P1 * (9*V2))

Cancelling the obvious:

T2 = 20 * 40 * (1/9)

T2 = 88.89 C

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

First we reason this out intuitively:

If the air was compressed to 1/9 its original volume and the temperature didn’t change, it would end up with 9 times its original pressure.

However the pressure changes from 1 atm to 40 atm, which is a 40-fold increase.

The only way the pressure could end up at 40 times the original pressure, as opposed to 9 times the original, would be to heat up. Its absolute temperature would therefore have to rise by a factor of 40 / 9.

Its original temperature was 20 C = 293 K, so the final temperature would be 293 K * 40/9, or over 1300 K.

Now we reason in terms of the ideal gas law.

P V = n R T.

In this situation the number of moles n of the gas remains constant. Thus P V / T = n R, which is constant, and thus P1 V1 / T1 = P2 V2 /T2.

The final temperature T2 is therefore

• T2 = (P2 / P1) * (V2 / V1) * T1.

From the given information P2 / P1 = 40 and V2 / V1 = 1/9 so

• T2 = 40 * 1/9 * T1.

The original temperature is 20 C = 293 K so that T1 = 293 K, and we get

• T2 = 40 * 1/9 * 293 K,

the same result as before.

Your Self-Critique: OK

Your Self-Critique Rating: 3

*********************************************

Question: query gen phy ch 13.38 fraction of air released after tire temp increases from 15 to 38 C at 220 kPa gauge

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution:

Using the same equation as before, PV=nRT, we can cancel the like values again. This leaves us with:

(P1*V1)/T1 = (P2 * V2)/T2

Our known values are P1 = P2 = 220 kPa, T1 = 15, T2 = 38.

(220*V1)/15 = (220*V2)/38

14.667*V1 = 5.789*V2

V1 = .3947*V2 or 15/38 V2

To answer the question of how much air should be REMOVED, the answer is 23/38 of the original air volume.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

(Note that the given 220 kPa initial gauge pressure implies an absolute pressure of 311 k Pa; assuming atmospheric pressure of about 101 k Pa, we add this to the gauge pressure to get absolute pressure.

Remember that the gas laws are stated in terms of absolute temperature and pressure.

The gas goes through three states. The temperature and pressure change between the first and second states, leaving the volume and the number n of moles constant. Between the second and third states pressure returns to its original value while volume remains constant and the number n of moles decreases.

From the first state to the second:

T1 = 288 K, T2 = 311 K so T2 / T1 = 311 / 288 = 1.08, approx.

This is approx. an 8% increase in temperature. The pressure must therefore rise to

P2 = 3ll / 288 * 321 kPa = 346 kPa, approx

(note that we have to use actual rather than gauge pressure so init pressure is 220 kPa + 101 kPa = 321 kPa, approx. )

From the second state to the third, pressure is then released by releasing some gas, changing the number n of moles of gas in order to get pressure back to 331 kPa. Thus

n3 / n2 = P3 / P2 = 321 kPa / 346 kPa or approximately .93, which would be about a 7% decrease. So we have to release about 7% of the air.

Note that these calculations have been done mentally, and they might not be particularly accurate. Work out the process to botain the accurate numerical results.

Note also that temperature changes from the second to third state were not mentioned in the problem; in reality we would expect a temperature change to accompany the release of the air.

Your Self-Critique:

So we lost some moles of substance by releasing the air… I understand how you got your solution I just overlooked this.

Your Self-Critique Rating: 2

*********************************************

Question: query univ phy 17.116 (15.106 10th edition) 1.5 * 10^11 m, 1.5 kW/m^2, sun rad 6.96 * 10^8 m.

How did you calculate the total radiation of the Sun and how did you use this result to get the radiation per unit area?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution: phy 202

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Outline of solution strategy:

If we multiply the number of watts per unit of area by the surface area of the Sun we get the number of watts radiated from the Sun.

The energy flows outward in a spherically symmetric manner; at any distance the entire power is distributed over the radius of a sphere concentric with the Sun and of radius equal to the distance.

So if we divide that number of watts by the area of a sphere whose radius is equal to that of the Earth’s orbit, we get the number of watts per unit of area at that distance.

This strategy is followed in the student solution given below:

Good student solution:

4.28055 x 10 ^ 26 W / (4*`pi * (6.96 x 10 ^ 8 m)^2) = 4.28055 x 10 ^ 26 W / 6.08735 x 10 ^ 18 m^2 = 70318775.82 J/s/m^2 = 7.03 x 10 ^ 7 J/s/m^2

If the sun is radiating as an ideal blackbody, e = 1, then T would be found as follows:

H = `dQ/`dt = 4.28055 x 10 ^ 26 W = (4*`pi * (6.96 x 10 ^ 8 m)^2) * (1) * (5.67051 x 10^-8 W/m^2*K) * T^4

So T^ 4 = 4.28055 x 10 ^ 26 W / 6.087351 x 10 ^ 18 m^2) * 1 * (5.67051 x 10^-8 W/m^2*K)

T^4 = 1.240 * 10 ^ 15 K ^4

T = 5934.10766 K on surface of sun. **

Your Self-Critique: PHy 202

Your Self-Critique Rating:

*********************************************

Question: univ phy 17.115 time to melt 1.2 cm ice by solar radiation 600 w/m^2, 70% absorption, environment at 0 C.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution: phy 202

confidence rating: PHY 202

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Thermal energy is not radiating in significant quantities from the ice, so only the incoming radiation needs to be considered, and as stated only 70% of that energy is absorbed by the ice..

• 70% of the incoming 600 watts/m^2 is 420 watts / m^2, or 420 Joules/second for every square meter if ice.

• Melting takes place at 0 C so there is no thermal exchange with the environment. Thus each square meter absorbs 420 Joules of energy per second.

We need to consider the volume of ice corresponding to a square meter. Having found that we can determine the energy required to melt the given thickness:

• A 1.2 cm thickness of ice will have a volume of .012 m^3 for every square meter of surface area; the mass will be close to 1000 kg/m^3, so there are about 12 kg of ice for every m^2 of surface (you can obtain a more accurate result by using the a more accurate density; the density of ice (which floats in water) is actually somewhat less than that of water).

• It takes about 330,000 Joules to melt a kg of ice at 0 C, so to melt 12 kg requires around 4,000,000 J. At 420 Joules/sec this will require roughly 10,000 seconds, or around 3 hours.

"

&#Good responses. Let me know if you have questions. &#