Assignment 7

course Phy 202

.................................................óª—÷ൢ¸ûäˆLý†¤ÐŸ¨~Â

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

assignment #007

007. `Query 28

Physics II

07-28-2007

......!!!!!!!!...................................

20:28:39

Query introductory problems set 54 #'s 1-7.

Explain how to obtain the magnetic field due to a given current through a small current segment, and how the position of a point with respect to the segment affects the result.

......!!!!!!!!...................................

RESPONSE -->

Well, I'd use the formula

B=k*(IL)/r^2*sin(angle), where k is constant, I is the current, L is the lenght of the segment, and r is the vector.

.................................................

......!!!!!!!!...................................

20:28:49

** IL is the source. The law is basically an inverse square law and the angle theta between IL and the vector r from the source to the point also has an effect so that the field is

B = k ' I L / r^2 * sin(theta). **

......!!!!!!!!...................................

RESPONSE -->

This makes sense.

.................................................

......!!!!!!!!...................................

20:31:33

Query principles and general college physics problem 17.34: How much charge flows from each terminal of 7.00 microF capacitor when connected to 12.0 volt battery?

......!!!!!!!!...................................

RESPONSE -->

We know the formula C=Q/V, where c is the capacitance, q is charge and v is voltage. We know the capacitance and the voltage, so we can literally solve for the charge by rearranging the equation.

C=Q/V

Q=C*V

=7.00mF*12.0V=84 Coloumbs

.................................................

......!!!!!!!!...................................

20:31:52

Capacitance is stored charge per unit of voltage: C = Q / V. Thus the stored charge is Q = C * V, and the battery will have the effect of transferring charge of magnitude Q = C * V = 7.00 microF * 12.0 volts = 7.00 C / volt * 12.0 volts = 84.0 C of charge.{}{}This would be accomplished the the flow of 84.0 C of positive charge from the positive terminal, or a flow of -84.0 C of charge from the negative terminal. Conventional batteries in conventional circuits transfer negative charges.

......!!!!!!!!...................................

RESPONSE -->

Ok

.................................................

......!!!!!!!!...................................

20:48:59

Explain how to obtain the magnetic field due to a circular loop at the center of the loop.

......!!!!!!!!...................................

RESPONSE -->

I know we are supposed to use the formula B=K*I(DL)/r^2 somehow, but I am not sure how to apply it to the idea of two loops, one within the other.

.................................................

......!!!!!!!!...................................

21:03:01

Query gen phy text problem 17.18 potential 2.5 * 10^-15 m from proton; PE of two protons at this separation in a nucleus.

What is the electrostatic potential at a distance of 2.5 * 10^-15 meters?

......!!!!!!!!...................................

RESPONSE -->

V=kq/r

I looked it up on the internet and found that the charge on a proton is roughly 1.60*10^-19 C. This is q.

K is constant, and r is the distance, so we can merely fill in the known information:

V=9.0*10^9 N*m^2/c^2(1.6*10^-19C)/2.5*10^-15m

=5.8*10^-5V.

We had to find V in order to be able to solve for the work that was necessary to assemble the charges.

W=qV, where q is obviously the chage of the proton (in this case) and v is the voltage from above.

=1.6*10^-19C*5.8*10^-5V

=9.2*10^-14J

.................................................

......!!!!!!!!...................................

21:03:30

STUDENT SOLUTION: For a part, to determine the electric potential a distance fo 2.5810^-15m away from a proton, I simply used the equation V = k q / r for electric potential for point charge:

q = 1.60*10^-19C=charge on proton

V = kq/r = 9.0*10^9N*m^2/C^2(1.60*10^-19C) / (2.5*10^-15m) = 5.8*10^5V.

Part B was the more difficult portion of the problem. You have to consider a system that consists of two protons 2.5*10^-5m apart.

The work done against the electric field to assemble these charges is W = qV. The potential energy is equal to the work done against the field.

PE=(1.60*10^-19C)(5.8*10^5V)

= 9.2*10^-14 J.

......!!!!!!!!...................................

RESPONSE -->

This makes sense.

.................................................

......!!!!!!!!...................................

21:03:32

query univ phy 23.58 (24.58 10th edition). Geiger counter: long central wire 145 microns radius, hollow cylinder radius 1.8 cm.

What potential difference between the wire in the cylinder will produce an electric field of 20,000 volts/m at 1.2 cm from the wire?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:03:36

** The voltage V_ab is obtained by integrating the electric field from the radius of the central wire to the outer radius.

From this we determine that E = Vab / ln(b/a) * 1/r, where a is the inner radius and b the outer radius.

If E = 20,000 V/m at r = 1.2 cm then

Vab = E * r * ln(b/a) = 20,000 V/m * ln(1.8 cm / .0145 cm) * .012 m = 1157 V. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:03:38

Query univ 23.78 (24.72 10th edition). Rain drop radius .65 mm charge -1.2 pC.

What is the potential at the surface of the rain drop?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:03:42

STUDENT RESPONSE FOLLOWED BY SOLUTION: The problem said that V was 0 at d = inifinity, which I understnad to mean that as we approach the raindrop from infinity, the potential differencegrows from 0, to some amount at the surface of the raindrop. Because water molecules are more positive on one side that the other, they tend to align in a certain direction. Since positive charges tend to drift toward negative charge, I would think that the raindrop, with its overall negative charge, has molecules arranged so that their more positive sides are pointing toward the center and negative sides will be alighed along the surface of the raindrop. Probably all wrong. I tried several differnet integrand configuraitons but never found one that gave me an answer in volts.

SOLUTION:

You will have charge Q = -1.2 * 10^-12 C on the surface of a sphere of radius .00065 m.

The field is therefore E = k Q / r^2 = 9 * 10^9 N m^2 / C^2 * (-1.2 * 10^-12 C) / r^2 = -1.08 * 10^-2 N m^2 / C / r^2.

Integrating the field from infinity to .00065 m we get

(-1.08 * 10^-2 N m^2 / C) / (.00065 m) = -16.6 N m / C = -16.6 V.

If two such drops merge they form a sphere with twice the volume and hence 2^(1/3) times the radius, and twice the charge.

The surface potential is proportional to charge and inversely proportional to volume. So the surface potential will be 2 / 2^(1/3) = 2^(2/3) times as great as before.

The surface potential is therefore 16.6 V * 2^(2/3) = -26.4 volts, approx.. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:45:15

** For current running in a circular loop:

Each small increment `dL of the loop is a source I `dL. The vector from `dL to the center of the loop has magnitude r, where r is the radius of the loop, and is perpendicular to the loop so the contribution of increment * `dL to the field is k ' I `dL / r^2 sin(90 deg) = I `dL / r^2, where r is the radius of the loop. The field is either upward or downward by the right-hand rule, depending on whether the current runs counterclockwise or clockwise, respectively. The field has this direction regardless of where the increment is located.

The sum of the fields from all the increments therefore has magnitude

B = sum(k ' I `dL / r^2), where the summation occurs around the entire loop. I and r are constants so the sum is

B = k ' I / r^2 sum(`dL).

The sum of all the length increments around the loop is the circumference 2 pi r of the loop so we have

B = 2 pi r k ' I / r^2 = 2 pi k ' I / r. **

......!!!!!!!!...................................

RESPONSE -->

I understand, first, that we have to find the sum of the fields of all the increments of the loops.

Then, it makes sense, too, that to find the sum of the increments around the circumference that we'd have to combine the circumference formula and the summatiojn of the fields formula.

In theory this all makes decent sense to me; however, I am not confident that I could perform such calculations on my own.

.................................................

......!!!!!!!!...................................

21:48:47

Query magnetic fields produced by electric currents.

What evidence do we have that electric currents produce magnetic fields?

......!!!!!!!!...................................

RESPONSE -->

Well, from the experiments we have done and from general life experiences, we know that wires with currents (electrical currents) oftentimes attract other objects like paperclips or something, thus indicating that the electric currents do, in fact, create or cause magnetic fields to develop.

.................................................

......!!!!!!!!...................................

21:49:04

STUDENT RESPONSE: We do have evidence that electric currents produce magnetic fields. This is observed in engineering when laying current carrying wires next to each other. The current carrying wires produce magnetic fields that may affect other wires or possibly metal objects that are near them. This is evident in the video experiment. When Dave placed the metal ball near the coil of wires and turned the generator to produce current in the wires the ball moved toward the coil. This means that there was an attraction toward the coil which in this case was a magnetic field.

INSTRUCTOR COMMENT:

Good observations. A very specific observation that should be included is that a compass placed over a conducting strip or wire initially oriented in the North-South direction will be deflected toward the East-West direction. **

......!!!!!!!!...................................

RESPONSE -->

I didn't explain it very ""scientifically"" but I do understand the concept thoroughly.

.................................................

......!!!!!!!!...................................

21:52:37

How is the direction of an electric current related to the direction of the magnetic field that results?

......!!!!!!!!...................................

RESPONSE -->

Well, I know we use the right hand rule to find which way each ""points.""

.................................................

......!!!!!!!!...................................

21:54:19

** GOOD STUDENT RESPONSE:

The direction of the magnetic field relative to the direction of the electric current can be described using the right hand rule. This means simply using your right hand as a model you hold it so that your thumb is extended and your four fingers are flexed as if you were holding a cylinder. In this model, your thumb represents the direction of the electric current in the wire and the flexed fingers represent the direction of the magnetic field due to the current. In the case of the experiment the wire was in a coil so the magnetic field goes through the hole in the middle in one direction. **

......!!!!!!!!...................................

RESPONSE -->

I should have said this, but the magnetic field direction is obviously dependent upon the direction of the electric current. Then, one utilizes the right hand rule accordingly.

.................................................

......!!!!!!!!...................................

22:22:12

Query problem 17.35

What would be the area of a .20 F capacitor if plates are separated by 2.2 mm of air?

......!!!!!!!!...................................

RESPONSE -->

I think it is Gauss' law that we can use here.

E=4*pi*k(Q/A)

After finding E, we can then use E to find the voltage between the plates using the formula V=E*r, where r is the separatino and E is the electric field.

Now, we use the formula C=Q/V in terms of variables we do know:

C=Q/(E*r)=Q/(4pi*k(Q/A)*r), which simplifies to A/4pi*k*r*C

Now, the actual questions asks for A, so we have to rearrange the equation to solve for A, the area.

A=4pi*k*r*C

Now filling in knonw variables:

A=4*pi*(9*10^9Nm^2/C^2)*.0022mm*.20 C/V

= 5*10^7 m^2

I know I Should have done the actual unit calculations, but since this was area I knewt he answer would come out in m^2, so I didn't do those calculations to save myself time.

.................................................

......!!!!!!!!...................................

22:22:25

** If a parallel-plate capacitor holds charge Q and the plates are separated by air, which has dielectric constant very close to 1, then the electric field between the plates is E = 4 pi k sigma = 4 pi k Q / A, obtained by applying Gauss' Law to each plate. The voltage between the plates is therefore V = E * d, where d is the separation.

The capacitance is C = Q / V = Q / (4 pi k Q / A * d) = A / (4 pi k d).

Solving this formula C = A / (4 pi k d) for A for the area we get A = 4 pi k d * C

If capacitance is C = .20 F and the plates are separated by 2.2 mm = .0022 m we therefore have

A = 4 pi k d * C = 4 pi * 9 * 10^9 N m^2 / C^2 * .20 C / V * .0022 m =

5 * 10^7 N m^2 / C^2 * C / ( J / C) * m =

5 * 10^7 N m^2 / (N m) * m =

5 * 10^7 m^2. **

......!!!!!!!!...................................

RESPONSE -->

I have no idea why I decided to use r instead of d, but I guess it doens't really matter..

d is the better letter for this situation, since r invokes the idea of a radius, but your solution was fine

.................................................

......!!!!!!!!...................................

21:19:25

Query problem 17.50 charge Q on capacitor; separation halved as dielectric with const K inserted; by what factor does the energy storage change? Compare the new electric field with the old.

......!!!!!!!!...................................

RESPONSE -->

I don't know how to even begin to attempt this.

.................................................

......!!!!!!!!...................................

21:32:08

Note that the problem in the latest version of the text doubles rather than halves the separation. The solution for the halved separation, given here, should help you assess whether your solution was correct, and if not should help you construct a detailed and valid self-critique.

** For a capacitor we know the following:

Electric field is independent of separation, as long as we don't have some huge separation.

Voltage is work / unit charge to move from one plate to the other, which is force / unit charge * distance between plates, or electric field * distance. That is, V = E * d.

Capacitance is Q / V, ration of charge to voltage.

Energy stored is .5 Q^2 / C, which is just the work required to move charge Q across the plates with the 'average' voltage .5 Q / C (also obtained by integrating `dW = `dQ * V = `dq * q / C from q=0 to q = Q).

The dielectric increases capacitance by reducing the electric field, which thereby reduces the voltage between plates. The electric field will be 1 / k times as great, meaning 1/k times the voltage at any given separation.

C will increase by factor k due to dielectric, and will also increase by factor 2 due to halving of the distance. This is because the electric field is independent of the distance between plates, so halving the distance will halve the voltage between the plates. Since C = Q / V, this halving of the denominator will double C.

Thus the capacitance increases by factor 2 k, which will decrease .5 Q^2 / C, the energy stored, by factor 2 k. **

......!!!!!!!!...................................

RESPONSE -->

This is almost above my head.

I understand that the electric field is basically indepenent of separation; from there, we take basic formulas and sort of sub them in to more complicated ones.

The thing that I am having the most problem understanding is the relationship between the .5Q^2/C equatino and the 1/k. I don't know whether my comprehension of this stuff is dwindling or if this is just hard and I am getting frustrated, but I just do not understand it.

Energy stored by the capacitor is .5 Q^2 / C.

k is fairly straightforward in its effect--it decreases the electric field, which decreases the voltage for a given charge and hence increases the capacitance C by factor k.

Since energy is .5 Q^2 / C, with capacitance in the denominator, changing C by factor k changes stored energy by factor 1 / k.

.................................................

......!!!!!!!!...................................

21:32:10

......!!!!!!!!...................................

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:32:13

query univ 24.50 (25.36 10th edition). Parallel plates 16 cm square 4.7 mm apart connected to a 12 volt battery.

What is the capacitance of this capacitor?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:32:15

** Fundamental principles include the fact that the electric field is very neary constant between parallel plates, the voltage is equal to field * separation, electric field from a single plate is 2 pi k sigma, the work required to displace a charge is equal to charge * ave voltage, and capacitance is charge / voltage. Using these principles we reason out the problem as follows:

If the 4.7 mm separation experiences a 12 V potential difference then the electric field is

E = 12 V / (4.7 mm) = 12 V / (.0047 m) = 2550 V / m, approx.

Since the electric field of a plane charge distribution with density sigma is 2 pi k sigma, and since the electric field is created by two plates with equal opposite charge density, the field of the capacitor is 4 pi k sigma. So we have

4 pi k sigma = 2250 V / m and

sigma = 2250 V / m / (4 pi k) = 2250 V / m / (4 pi * 9 * 10^9 N m^2 / C^2) = 2.25 * 10^-8 C / m^2.

The area of the plate is .0256 m^2 so the charge on a plate is

.0256 m^2 * 2.25 * 10^-8 C / m^2 = 5.76 * 10^-10 C.

The capacitance is C = Q / V = 5.67 * 10^-10 C / (12 V) = 4.7 * 10^-11 C / V = 4.7 * 10^-11 Farads.

The energy stored in the capacitor is equal to the work required to move this charge from one plate to another, starting with an initially uncharged capacitor.

The work to move a charge Q across an average potential difference Vave is Vave * Q.

Since the voltage across the capacitor increases linearly with charge the average voltage is half the final voltage, so we have vAve = V / 2, with V = 12 V. So the energy is

energy = vAve * Q = 12 V / 2 * (5.76 * 10^-10 C) = 3.4 * 10^-9 V / m * C.

Since the unit V / m * C is the same as J / C * C = J, we see that the energy is

3.4 * 10^-9 J.

Pulling the plates twice as far apart while maintaining the same voltage would cut the electric field in half (the voltage is the same but charge has to move twice as far). This would imply half the charge density, half the charge and therefore half the capacitance. Since we are moving only half the charge through the same average potential difference we use only 1/2 the energy.

Note that the work to move charge `dq across the capacitor when the charge on the capacitor is `dq * V = `dq * (q / C), so to obtain the work required to charge the capacitor we integrate q / C with respect to q from q = 0 to q = Q, where Q is the final charge. The antiderivative is q^2 / ( 2 C ) so the definite integral is Q^2 / ( 2 C).

This is the same result obtained using average voltage and charge, which yields V / 2 * Q = (Q / C) / 2 * Q = Q^2 / (2 C)

Integration is necessary for cylindrical and spherical capacitors and other capacitors which are not in a parallel-plate configuration. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:32:18

query univ 24.51 (25.37 10th edition). Parallel plates 16 cm square 4.7 mm apart connected to a 12 volt battery.

If the battery remains connected and plates are pulled to separation 9.4 mm then what are the capacitance, charge of each plate, electric field, energy stored?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:32:19

The potential difference between the plates is originally 12 volts. 12 volts over a 4.7 mm separation implies

electric field = potential gradient = 12 V / (.0047 m) = 2500 J / m = 2500 N / C, approx..

The electric field is E = 4 pi k * sigma = 4 pi k * Q / A so we have

Q = E * A / ( 4 pi k) = 2500 N / C * (.16 m)^2 / (4 * pi * 9 * 10^9 N m^2 / C^2) = 5.7 * 10^-7 N / C * m^2 / (N m^2 / C^2) = 5.7 * 10^-10 C, approx..

The energy stored is E = 1/2 Q V = 1/2 * 5.6 * 10^-10 C * 12 J / C = 3.36 * 10^-9 J.

If the battery remains connected then if the plate separation is doubled the voltage will remain the same, while the potential gradient and hence the field will be halved. This will halve the charge on the plates, giving us half the capacitance. So we end up with a charge of about 2.8 * 10^-10 C, and a field of about 1250 N / C.

The energy stored will also be halved, since V remains the same but Q is halved.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:32:22

query univ 24.68 (25.52 10th edition). Solid conducting sphere radius R charge Q.

What is the electric-field energy density at distance r < R from the center of the sphere?

What is the electric-field energy density at distance r > R from the center of the sphere?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:32:24

** The idea is that we have to integrate the energy density over all space. We'll do this by finding the total energy in a thin spherical shell of radius r and thickness `dr, using this result to obtain an expression we integrate from R to infinity, noting that the field of the conducting sphere is zero for r < R.

Then we can integrate to find the work required to assemble the charge on the surface of the sphere and we'll find that the two results are equal.

Energy density, defined by dividing the energy .5 C V^2 required to charge a parallel-plate capacitor by the volume occupied by its electric field, is

Energy density = .5 C V^2 / (volume) = .5 C V^2 / (d * A), where d is the separation of the plates and A the area of the plates.

Since C = epsilon0 A / d and V = E * d this gives us .5 epsilon0 A / d * (E * d)^2 / (d * A) = .5 epsilon0 E^2 so that

Energy density = .5 epsilon0 E^2, or in terms of k

Energy density = 1 / (8 pi k) E^2,

Since your text uses epsilon0 I'll do the same on this problem, where the epsilon0 notation makes a good deal of sense:

For the charged sphere we have for r > R

E = Q / (4 pi epsilon0 r^2), and therefore

energy density = .5 epsilon0 E^2 = .5 epsilon0 Q^2 / (16 pi^2 epsilon0^2 r^4) = Q^2 / (32 pi^2 epsilon0 r^4).

The energy density between r and r + `dr is nearly constant if `dr is small, with energy density approximately Q^2 / (32 pi^2 epsilon0 r^4).

The volume of space between r and r + `dr is approximately A * `dr = 4 pi r^2 `dr.

The expression for the energy lying between distance r and r + `dr is therefore approximately energy density * volume = Q^2 / (32 pi^2 epsilon0 r^4) * 4 pi r^2 `dr = Q^2 / (8 pi epsilon0 r^2) `dr.

This leads to a Riemann sum over radius r; as we let `dr approach zero we approach an integral with integrand Q^2 / (8 pi epsilon0 r^2), integrated with respect to r.

To get the energy between two radii we therefore integrate this expression between those two radii.

If we integrate this expression from r = R to infinity we get the total energy of the field of the charged sphere.

This integral gives us Q^2 / (8 pi epsilon0 R), which is the same as k Q^2 / (2 R).

The work required to bring a charge `dq from infinity to a sphere containing charge q is k q / R `dq, leading to the integral of k q / R with respect to q. If we integrate from q = 0 to q = Q we get the total work required to charge the sphere. Our antiderivative is k (q^2 / 2) / r. If we evaluate this antiderivative at lower limit 0 and upper limit Q we get k Q^2 / (2 R).

Since k = 1 / (4 pi epsilon0) the work is k Q^2 / (2 R) = k Q^2 / (8 pi epsilon0 R).

So the energy in the field is equal to the work required to assemble the charge distribution. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:32:31

......!!!!!!!!...................................

RESPONSE -->

.................................................

"

&#

Good responses. See my notes and let me know if you have questions. &#