init probs

You did well on most of these problems, but should have included more detail on some, and there are several that should have been self-critiqued but weren't. I inserted a note in boldface like this one on one of those problems, to be sure you understand what is mean by 'self-critique' and when you need to do it.

}~˃b딞s Student Name: assignment #002 002. Describing Graphs

......!!!!!!!!...................................

12:24:16 `questionNumber 20001 `q001. You will frequently need to describe the graphs you have constructed in this course. This exercise is designed to get you used to some of the terminology we use to describe graphs. Please complete this exercise and email your work to the instructor.

Problem 1. We make a table for y = 2x + 7 as follows: We construct two columns, and label the first column 'x' and the second 'y'. Put the numbers -3, -2, -1, -, 1, 2, 3 in the 'x' column. We substitute -3 into the expression and get y = 2(-3) + 7 = 1. We substitute -2 and get y = 2(-2) + 7 = 3. Substituting the remaining numbers we get y values 5, 7, 9, 11 and 13. These numbers go into the second column, each next to the x value from which it was obtained. We then graph these points on a set of x-y coordinate axes. Noting that these points lie on a straight line, we then construct the line through the points.

Now make a table for and graph the function y = 3x - 4.

Identify the intercepts of the graph, i.e., the points where the graph goes through the x and the y axes.

......!!!!!!!!...................................

RESPONSE --> in the x column i have -3,-2,-1,1,2,3 in the y column i got -13,-10,-7,-1,2,5

x intercepts:1.5 y intercepts:-3

.................................................

......!!!!!!!!...................................

12:25:03 `questionNumber 20001 The graph goes through the x axis when y = 0 and through the y axis when x = 0.

The x-intercept is therefore when 0 = 3x - 4, so 4 = 3x and x = 4/3.

The y-intercept is when y = 3 * 0 - 4 = -4. Thus the x intercept is at (4/3, 0) and the y intercept is at (0, -4).

Your graph should confirm this.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

i get the intercepts now

.................................................

......!!!!!!!!...................................

12:27:15 `questionNumber 20002 `q002. Does the steepness of the graph in the preceding exercise (of the function y = 3x - 4) change? If so describe how it changes.

......!!!!!!!!...................................

RESPONSE --> its slanted

.................................................

......!!!!!!!!...................................

12:27:25 `questionNumber 20002 The graph forms a straight line with no change in steepness.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

ok

.................................................

......!!!!!!!!...................................

12:30:27 `questionNumber 20003 `q003. What is the slope of the graph of the preceding two exercises (the function ia y = 3x - 4;slope is rise / run between two points of the graph)?

......!!!!!!!!...................................

RESPONSE --> slope is 3

.................................................

......!!!!!!!!...................................

12:30:35 `questionNumber 20003 Between any two points of the graph rise / run = 3.

For example, when x = 2 we have y = 3 * 2 - 4 = 2 and when x = 8 we have y = 3 * 8 - 4 = 20. Between these points the rise is 20 - 2 = 18 and the run is 8 - 2 = 6 so the slope is rise / run = 18 / 6 = 3.

Note that 3 is the coefficient of x in y = 3x - 4.

Note the following for reference in subsequent problems: The graph of this function is a straight line. The graph increases as we move from left to right. We therefore say that the graph is increasing, and that it is increasing at constant rate because the steepness of a straight line doesn't change.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

12:34:45 `questionNumber 20004 `q004. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE --> in the x column i put -3,-2,-1,1,2,3 in the y column i got 9,4,1,1,4,9

the graph decreases at a constant rate and then increases at a constant rate.

the steepness does change

.................................................

......!!!!!!!!...................................

12:34:58 `questionNumber 20004 Graph points include (0,0), (1,1), (2,4) and (3,9). The y values are 0, 1, 4 and 9, which increase as we move from left to right.

The increases between these points are 1, 3 and 5, so the graph not only increases, it increases at an increasing rate.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

12:38:17 `questionNumber 20005 `q005. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = -3 and x = 0.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE --> x column-3 -2 -1 1 2 3 y column 9 4 1 1 4 9

decreases at a decreasing rate decreasing

.................................................

......!!!!!!!!...................................

12:38:27 `questionNumber 20005 From left to right the graph is decreasing (points (-3,9), (- 2,4), (-1,1), (0,0) show y values 9, 4, 1, 0 as we move from left to right ). The magnitudes of the changes in x from 9 to 4 to 1 to 0 decrease, so the steepness is decreasing.

Thus the graph is decreasing, but more and more slowly. We therefore say that the graph is decreasing at a decreasing rate.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

12:40:52 `questionNumber 20006 `q006. Make a table of y vs. x for y = `sqrt(x). [note: `sqrt(x) means 'the square root of x']. Graph y = `sqrt(x) between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE --> x column -3 -2 -1 1 2 3 y column 1.73, 1.41 i 1 1.41 1.73

increases

sqrt(x) is not defined for negative values. For x = 1, 2, 3 and values are as you give them.

.................................................

......!!!!!!!!...................................

12:41:42 `questionNumber 20006 If you use x values 0, 1, 2, 3, 4 you will obtain graph points (0,0), (1,1), (2,1.414), (3. 1.732), (4,2). The y value changes by less and less for every succeeding x value. Thus the steepness of the graph is decreasing.

The graph would be increasing at a decreasing rate.{}{} If the graph respresents the profile of a hill, the hill starts out very steep but gets easier and easier to climb. You are still climbing but you go up by less with each step, so the rate of increase is decreasing. {}{}If your graph doesn't look like this then you probably are not using a consistent scale for at least one of the axes. If your graph isn't as desribed take another look at your plot and make a note in your response indicating any difficulties.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

ok

Your response did not agree with the given solution in all details, and you should therefore have addressed the discrepancy with a full self-critique, detailing the discrepancy and demonstrating exactly what you do and do not understand about the given solution, and if necessary asking specific questions.

.................................................

......!!!!!!!!...................................

12:47:50 `questionNumber 20007 `q007. Make a table of y vs. x for y = 5 * 2^(-x). Graph y = 5 * 2^(-x) between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

......!!!!!!!!...................................

RESPONSE --> x column -3 -2 -1 1 2 3 y column 40 20 10 2.5 1.25 .625

decrease at a decreasing rate steepness does not change

.................................................

......!!!!!!!!...................................

12:48:03 `questionNumber 20007 ** From basic algebra recall that a^(-b) = 1 / (a^b).

So, for example:

2^-2 = 1 / (2^2) = 1/4, so 5 * 2^-2 = 5 * 1/4 = 5/4.

5* 2^-3 = 5 * (1 / 2^3) = 5 * 1/8 = 5/8. Etc.

The decimal equivalents of the values for x = 0 to x = 3 will be 5, 2.5, 1.25, .625. These values decrease, but by less and less each time.

The graph is therefore decreasing at a decreasing rate. **

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

ok

.................................................

ܟc{_ӄ Student Name: assignment #002 002. Describing Graphs ןxǵ߻Ȉ͔dT Student Name: assignment #005 005. Calculus

......!!!!!!!!...................................

13:10:35 `questionNumber 50001 `q001. The graph of a certain function is a smooth curve passing through the points (3, 5), (7, 17) and (10, 29).

Between which two points do you think the graph is steeper, on the average?

Why do we say 'on the average'?

......!!!!!!!!...................................

RESPONSE --> between 7, 17 and 10, 29

that means to the closest point or whatever is the closest

.................................................

......!!!!!!!!...................................

13:10:47 `questionNumber 50001 Slope = rise / run.

Between points (7, 17) and (10, 29) we get rise / run = (29 - 17) / (10 - 7) =12 / 3 = 4.

The slope between points (3, 5) and (7, 17) is 3 / 1. (17 - 5) / (7 -3) = 12 / 4 = 3.

The segment with slope 4 is the steeper. The graph being a smooth curve, slopes may vary from point to point. The slope obtained over the interval is a specific type of average of the slopes of all points between the endpoints.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. ok

.................................................

......!!!!!!!!...................................

13:14:07 `questionNumber 50001 2. Answer without using a calculator: As x takes the values 2.1, 2.01, 2.001 and 2.0001, what values are taken by the expression 1 / (x - 2)?

1. As the process continues, with x getting closer and closer to 2, what happens to the values of 1 / (x-2)?

2. Will the value ever exceed a billion? Will it ever exceed one trillion billions?

3. Will it ever exceed the number of particles in the known universe?

4. Is there any number it will never exceed?

5. What does the graph of y = 1 / (x-2) look like in the vicinity of x = 2?

......!!!!!!!!...................................

RESPONSE --> 10 100 1000 and so on

the values increase yes no has a vertical asymptote

.................................................

......!!!!!!!!...................................

13:14:32 `questionNumber 50001 For x = 2.1, 2.01, 2.001, 2.0001 we see that x -2 = .1, .01, .001, .0001. Thus 1/(x -2) takes respective values 10, 100, 1000, 10,000.

It is important to note that x is changing by smaller and smaller increments as it approaches 2, while the value of the function is changing by greater and greater amounts.

As x gets closer in closer to 2, it will reach the values 2.00001, 2.0000001, etc.. Since we can put as many zeros as we want in .000...001 the reciprocal 100...000 can be as large as we desire. Given any number, we can exceed it.

Note that the function is simply not defined for x = 2. We cannot divide 1 by 0 (try counting to 1 by 0's..You never get anywhere. It can't be done. You can count to 1 by .1's- -.1, .2, .3, ..., .9, 1. You get 10. You can do similar thing for .01, .001, etc., but you just can't do it for 0).

As x approaches 2 the graph approaches the vertical line x = 2; the graph itself is never vertical. That is, the graph will have a vertical asymptote at the line x = 2. As x approaches 2, therefore, 1 / (x-2) will exceed all bounds.

Note that if x approaches 2 through the values 1.9, 1.99, ..., the function gives us -10, -100, etc.. So we can see that on one side of x = 2 the graph will approach +infinity, on the other it will be negative and approach - infinity.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK. ok

.................................................

......!!!!!!!!...................................

13:16:33 `questionNumber 50003 `q003. One straight line segment connects the points (3,5) and (7,9) while another connects the points (10,2) and (50,4). From each of the four points a line segment is drawn directly down to the x axis, forming two trapezoids. Which trapezoid has the greater area? Try to justify your answer with something more precise than, for example, 'from a sketch I can see that this one is much bigger so it must have the greater area'.

......!!!!!!!!...................................

RESPONSE --> 10, 2 and 50, 4 points

.................................................

......!!!!!!!!...................................

13:16:47 `questionNumber 50003 Your sketch should show that while the first trapezoid averages a little more than double the altitude of the second, the second is clearly much more than twice as wide and hence has the greater area.

To justify this a little more precisely, the first trapezoid, which runs from x = 3 to x = 7, is 4 units wide while the second runs from x = 10 and to x = 50 and hence has a width of 40 units. The altitudes of the first trapezoid are 5 and 9,so the average altitude of the first is 7. The average altitude of the second is the average of the altitudes 2 and 4, or 3. So the first trapezoid is over twice as high, on the average, as the first. However the second is 10 times as wide, so the second trapezoid must have the greater area.

This is all the reasoning we need to answer the question. We could of course multiply average altitude by width for each trapezoid, obtaining area 7 * 4 = 28 for the first and 3 * 40 = 120 for the second. However if all we need to know is which trapezoid has a greater area, we need not bother with this step.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

ok

.................................................

......!!!!!!!!...................................

13:18:46 `questionNumber 50004 `q004. If f(x) = x^2 (meaning 'x raised to the power 2') then which is steeper, the line segment connecting the x = 2 and x = 5 points on the graph of f(x), or the line segment connecting the x = -1 and x = 7 points on the same graph? Explain the basisof your reasoning.

......!!!!!!!!...................................

RESPONSE --> x=-1 and x=7 is steeper

.................................................

......!!!!!!!!...................................

13:19:38 `questionNumber 50004 The line segment connecting x = 2 and the x = 5 points is steeper: Since f(x) = x^2, x = 2 gives y = 4 and x = 5 gives y = 25. The slope between the points is rise / run = (25 - 4) / (5 - 2) = 21 / 3 = 7.

The line segment connecting the x = -1 point (-1,1) and the x = 7 point (7,49) has a slope of (49 - 1) / (7 - -1) = 48 / 8 = 6.

The slope of the first segment is greater.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

i get it now

.................................................

......!!!!!!!!...................................

13:28:17 `questionNumber 50005 `q005. Suppose that every week of the current millenium you go to the jewler and obtain a certain number of grams of pure gold, which you then place in an old sock and bury in your backyard. Assume that buried gold lasts a long, long time ( this is so), that the the gold remains undisturbed (maybe, maybe not so), that no other source adds gold to your backyard (probably so), and that there was no gold in your yard before..

1. If you construct a graph of y = the number of grams of gold in your backyard vs. t = the number of weeks since Jan. 1, 2000, with the y axis pointing up and the t axis pointing to the right, will the points on your graph lie on a level straight line, a rising straight line, a falling straight line, a line which rises faster and faster, a line which rises but more and more slowly, a line which falls faster and faster, or a line which falls but more and more slowly?

2. Answer the same question assuming that every week you bury 1 more gram than you did the previous week. {}3. Answer the same question assuming that every week you bury half the amount you did the previous week.

......!!!!!!!!...................................

RESPONSE --> a rising straight line

a line that rises faster and faster

a line that falls but more and more slowly

.................................................

......!!!!!!!!...................................

13:29:01 `questionNumber 50005 1. If it's the same amount each week it would be a straight line.

2. Buying gold every week, the amount of gold will always increase. Since you buy more each week the rate of increase will keep increasing. So the graph will increase, and at an increasing rate.

3. Buying gold every week, the amount of gold won't ever decrease. Since you buy less each week the rate of increase will just keep falling. So the graph will increase, but at a decreasing rate. This graph will in fact approach a horizontal asymptote, since we have a geometric progression which implies an exponential function.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

get it now

.................................................

......!!!!!!!!...................................

13:31:09 `questionNumber 50006 `q006. Suppose that every week you go to the jewler and obtain a certain number of grams of pure gold, which you then place in an old sock and bury in your backyard. Assume that buried gold lasts a long, long time, that the the gold remains undisturbed, and that no other source adds gold to your backyard.

1. If you graph the rate at which gold is accumulating from week to week vs. tne number of weeks since Jan 1, 2000, will the points on your graph lie on a level straight line, a rising straight line, a falling straight line, a line which rises faster and faster, a line which rises but more and more slowly, a line which falls faster and faster, or a line which falls but more and more slowly?

2. Answer the same question assuming that every week you bury 1 more gram than you did the previous week.

3. Answer the same question assuming that every week you bury half the amount you did the previous week.

......!!!!!!!!...................................

RESPONSE --> a rising straight line

increasing

increasing at a slow rate

.................................................

......!!!!!!!!...................................

13:31:35 `questionNumber 50006 This set of questions is different from the preceding set. This question now asks about a graph of rate vs. time, whereas the last was about the graph of quantity vs. time.

Question 1: This question concerns the graph of the rate at which gold accumulates, which in this case, since you buy the same amount eact week, is constant. The graph would be a horizontal straight line.

Question 2: Each week you buy one more gram than the week before, so the rate goes up each week by 1 gram per week. You thus get a risingstraight line because the increase in the rate is the same from one week to the next.

Question 3. Since half the previous amount will be half of a declining amount, the rate will decrease while remaining positive, so the graph remains positive as it decreases more and more slowly. The rate approaches but never reaches zero.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

ok

.................................................

......!!!!!!!!...................................

13:40:28 `questionNumber 50006 7. If the depth of water in a container is given, in centimeters, by 100 - 2 t + .01 t^2, where t is clock time in seconds, then what are the depths at clock times t = 30, t = 40 and t = 60? On the average is depth changing more rapidly during the first time interval or the second?

......!!!!!!!!...................................

RESPONSE --> when t=30 depths are 49 when t=40 depths are 36 when t=60 depths are 16

on the first interval

.................................................

......!!!!!!!!...................................

13:41:57 `questionNumber 50006 At t = 30 we get depth = 100 - 2 t + .01 t^2 = 100 - 2 * 30 + .01 * 30^2 = 49.

At t = 40 we get depth = 100 - 2 t + .01 t^2 = 100 - 2 * 40 + .01 * 40^2 = 36.

At t = 60 we get depth = 100 - 2 t + .01 t^2 = 100 - 2 * 60 + .01 * 60^2 = 16.

49 cm - 36 cm = 13 cm change in 10 sec or 1.3 cm/s on the average.

36 cm - 16 cm = 20 cm change in 20 sec or 1.0 cm/s on the average.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

i get the depth change now

.................................................

......!!!!!!!!...................................

13:47:06 `questionNumber 50006 8. If the rate at which water descends in a container is given, in cm/s, by 10 - .1 t, where t is clock time in seconds, then at what rate is water descending when t = 10, and at what rate is it descending when t = 20? How much would you therefore expect the water level to change during this 10-second interval?

......!!!!!!!!...................................

RESPONSE --> when t=10 rate is 9cm/s when t=20 rate is 8cm/s

it wouldn't change much during the 10 sec. interval just 1cm/s

.................................................

......!!!!!!!!...................................

13:49:40 `questionNumber 50006 At t = 10 sec the rate function gives us 10 - .1 * 10 = 10 - 1 = 9, meaning a rate of 9 cm / sec.

At t = 20 sec the rate function gives us 10 - .1 * 20 = 10 - 2 = 8, meaning a rate of 8 cm / sec.

The rate never goes below 8 cm/s, so in 10 sec the change wouldn't be less than 80 cm.

The rate never goes above 9 cm/s, so in 10 sec the change wouldn't be greater than 90 cm.

Any answer that isn't between 80 cm and 90 cm doesn't fit the given conditions..

The rate change is a linear function of t. Therefore the average rate is the average of the two rates, or 9.5 cm/s.

The average of the rates is 8.5 cm/sec. In 10 sec that would imply a change of 85 cm.

......!!!!!!!!...................................

RESPONSE --> Enter, as appropriate, an answer to the question, a critique of your answer in response to a given answer, your insights regarding the situation at this point, notes to yourself, or just an OK.

ok

.................................................