Resubmitting Areas-Orientation

course Mth 151

Resubmitting the Areas part of chart, last step in the orientation, I did not see that it had been recieved. 6/27/09 @ 10:12 am

course Mth 151 http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

qa areas etc

001. Areas

*********************************************

*********************************************

Question: `q001. There are 11 questions and 7 summary questions in this assignment.

What is the area of a rectangle whose dimensions are 4 m by 3 meters.

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I first drew a rectangle and labeled the sides

Multiply the length by the width

4*3=12 squared meters

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aA 4 m by 3 m rectangle can be divided into 3 rows of 4 squares, each 1 meter on a side. This makes 3 * 4 = 12 such squares. Each 1 meter square has an area of 1 square meter, or 1 m^2. The total area of the rectangle is therefore 12 square meters, or 12 m^2.

The formula for the area of a rectangle is A = L * W, where L is the length and W the width of the rectangle. Applying this formula to the present problem we obtain area A = L * W = 4 m * 3 m = (4 * 3) ( m * m ) = 12 m^2.

Note the use of the unit m, standing for meters, in the entire calculation. Note that m * m = m^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating: 3

*********************************************

*********************************************

Question: `q002. What is the area of a right triangle whose legs are 4.0 meters and 3.0 meters?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I built 2 right triangles to get a rectangle. Then I multiplied the rectangle to find the area which is 3*4=12^2. Then I cut the rectangle in half diagonally and I had a right triangle. I divided the area of the rectangle and I have the area of the right triangle 12/2=6 squared meters

Confidence Assessment: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aA right triangle can be joined along its hypotenuse with another identical right triangle to form a rectangle. In this case the rectangle would have dimensions 4.0 meters by 3.0 meters, and would be divided by any diagonal into two identical right triangles with legs of 4.0 meters and 3.0 meters.

The rectangle will have area A = L * W = 4.0 m * 3.0 m = 12 m^2, as explained in the preceding problem. Each of the two right triangles, since they are identical, will therefore have half this area, or 1/2 * 12 m^2 = 6.0 m^2.

The formula for the area of a right triangle with base b and altitude h is A = 1/2 * b * h.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): this went pretty good

Self-critique Rating:

*********************************************

*********************************************

Question: `q003. What is the area of a parallelogram whose base is 5.0 meters and whose altitude is 2.0 meters?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First you draw a parellelogram and label. You multiply the base by the height and you get the area 2*0*5*0= 10 ^2m.

Confidence Assessment: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aA parallelogram is easily rearranged into a rectangle by 'cutting off' the protruding end, turning that portion upside down and joining it to the other end. Hopefully you are familiar with this construction. In any case the resulting rectangle has sides equal to the base and the altitude so its area is A = b * h.

The present rectangle has area A = 5.0 m * 2.0 m = 10 m^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique Rating:

*********************************************

*********************************************

Question: `q004. What is the area of a triangle whose base is 5.0 cm and whose altitude is 2.0 cm?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First I drew a triangle and labeled. I use the formula to find the area

A=½*b*h

½*5*2=5^2 meters

Confidence Assessment: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aIt is possible to join any triangle with an identical copy of itself to construct a parallelogram whose base and altitude are equal to the base and altitude of the triangle. The area of the parallelogram is A = b * h, so the area of each of the two identical triangles formed by 'cutting' the parallelogram about the approriate diagonal is A = 1/2 * b * h. The area of the present triangle is therefore A = 1/2 * 5.0 cm * 2.0 cm = 1/2 * 10 cm^2 = 5.0 cm^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique Rating:

*********************************************

*********************************************

Question: `q005. What is the area of a trapezoid with a width of 4.0 km and average altitude of 5.0 km?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First I draw a figure and fill in labels.

The only solution that I know would be multiply 4*5=20^2 meters. But the formula to find the area of a trapezoid is a=1/2h (b1+b2) and we only have the bottom base or it could be the top.

Confidence Assessment: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aAny trapezoid can be reconstructed to form a rectangle whose width is equal to that of the trapezoid and whose altitude is equal to the average of the two altitudes of the trapezoid. The area of the rectangle, and therefore the trapezoid, is therefore A = base * average altitude. In the present case this area is A = 4.0 km * 5.0 km = 20 km^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I thought a trapezoid had two different bases I did not know that they would make an even rectangle

Self-critique Rating: 2

*********************************************

*********************************************

Question: `q006. What is the area of a trapezoid whose width is 4 cm in whose altitudes are 3.0 cm and 8.0 cm?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I dew a figure and labeled. I am anot sure what to do other than add the altitudes maybe.

Multiply 4*11=44^2

Confidence Assessment: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aThe area is equal to the product of the width and the average altitude. Average altitude is (3 cm + 8 cm) / 2 = 5.5 cm so the area of the trapezoid is A = 4 cm * 5.5 cm = 22 cm^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I left out the division at the end not real familiar with this one. I struggled, but understand it now.

Self-critique Rating: 3

*********************************************

*********************************************

Question: `q007. What is the area of a circle whose radius is 3.00 cm?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First I drew and labeled. Then we use the formula A=3.14

3.14*3^2

3*14*3*3= 28.26 cm^2

Confidence Assessment: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aThe area of a circle is A = pi * r^2, where r is the radius. Thus

A = pi * (3 cm)^2 = 9 pi cm^2.

Note that the units are cm^2, since the cm unit is part r, which is squared.

The expression 9 pi cm^2 is exact. Any decimal equivalent is an approximation. Using the 3-significant-figure approximation pi = 3.14 we find that the approximate area is A = 9 pi cm^2 = 9 * 3.14 cm^2 = 28.26 cm^2, which we round to 28.3 cm^2 to match the number of significant figures in the given radius.

Be careful not to confuse the formula A = pi r^2, which gives area in square units, with the formula C = 2 pi r for the circumference. The latter gives a result which is in units of radius, rather than square units. Area is measured in square units; if you get an answer which is not in square units this tips you off to the fact that you've made an error somewhere.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique Rating: 2

*********************************************

*********************************************

Question: `q008. What is the circumference of a circle whose radius is exactly 3 cm?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Draw and label, use formula

c=2 pi r

2*3*14*3=18.84

c=18.84 cm

Confidence Assessment: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aThe circumference of this circle is

C = 2 pi r = 2 pi * 3 cm = 6 pi cm.

This is the exact area. An approximation to 3 significant figures is 6 * 3.14 cm = 18.84 cm.

Note that circumference is measured in the same units as radius, in this case cm, and not in cm^2. If your calculation gives you cm^2 then you know you've done something wrong.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique Rating: 1

*********************************************

*********************************************

Question: `q009. What is the area of a circle whose diameter is exactly 12 meters?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

In order to get the area with diameter we need to divide the diameter 2/12=6 then use the formula A= pi r^2

A=3.14*6^2=

A=3.14*6*6= 113.04^2

Confidence Assessment: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aThe area of a circle is A = pi r^2, where r is the radius. The radius of this circle is half the 12 m diameter, or 6 m. So the area is

A = pi ( 6 m )^2 = 36 pi m^2.

This result can be approximated to any desired accuracy by using a sufficient number of significant figures in our approximation of pi. For example using the 5-significant-figure approximation pi = 3.1416 we obtain A = 36 m^2 * 3.1416 = 113.09 m^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I was wondering about the carrying out of pi

Self-critique Rating: 2

*********************************************

*********************************************

Question: `q010. What is the area of a circle whose circumference is 14 `pi meters?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Divide 14 pi meters in half then put into the formula

A= pi^2

3.14*7^2 =153.86^2

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aWe know that A = pi r^2. We can find the area if we know the radius r. We therefore attempt to use the given information to find r.

We know that circumference and radius are related by C = 2 pi r. Solving for r we obtain r = C / (2 pi). In this case we find that

r = 14 pi m / (2 pi) = (14/2) * (pi/pi) m = 7 * 1 m = 7 m.

We use this to find the area

A = pi * (7 m)^2 = 49 pi m^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I wasn’t sure about this one, so I guessed and I believe I was close. I understand the problem after reviewing.

Self-critique Rating: 2

*********************************************

*********************************************

Question: `q011. What is the radius of circle whose area is 78 square meters?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: I am going to plug 78^2 meter into the formula

A=pi ^2 78=pi ^2

Divide pi into 78

3.14/78=24.84

Then we have 24.28=^2 subtract 24.28 from both sides after we round off 24.28 to 25^2. Then square + - = 5 radius

Confidence Assessment: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aKnowing that A = pi r^2 we solve for r. We first divide both sides by pi to obtain A / pi = r^2. We then reverse the sides and take the square root of both sides, obtaining r = sqrt( A / pi ).

Note that strictly speaking the solution to r^2 = A / pi is r = +-sqrt( A / pi ), meaning + sqrt( A / pi) or - sqrt(A / pi). However knowing that r and A are both positive quantities, we can reject the negative solution.

Now we substitute A = 78 m^2 to obtain

r = sqrt( 78 m^2 / pi) = sqrt(78 / pi) m.{}

Approximating this quantity to 2 significant figures we obtain r = 5.0 m.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I was not sure about this one so I rounded off and came up with 5 and it seemed to be as your solution.

Self-critique Rating: 2

*********************************************

*********************************************

Question: `q012. Summary Question 1: How do we visualize the area of a rectangle?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I see it as a cube being stretched out. The top and bottom lines are longer than the sides but even in length.

We multiply the short side with the long side and it gives us the area inside of our rectangle.

Confidence Assessment: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aWe visualize the rectangle being covered by rows of 1-unit squares. We multiply the number of squares in a row by the number of rows. So the area is A = L * W.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): Not to bad, but I like your solution better.

Self-critique Rating: 2

*********************************************

*********************************************

Question: `q013. Summary Question 2: How do we visualize the area of a right triangle?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

We would see a half of a rectangle then put two right triangles together with equal height and width. We use ½*b*h=A

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aWe visualize two identical right triangles being joined along their common hypotenuse to form a rectangle whose length is equal to the base of the triangle and whose width is equal to the altitude of the triangle. The area of the rectangle is b * h, so the area of each triangle is 1/2 * b * h.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique Rating:

*********************************************

*********************************************

Question: `q014. Summary Question 3: How do we calculate the area of a parallelogram?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

We use base times height not sure about this one

Confidence Assessment:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aThe area of a parallelogram is equal to the product of its base and its altitude. The altitude is measured perpendicular to the base.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I understand more clearly now.

Self-critique Rating:

*********************************************

*********************************************

Question: `q015. Summary Question 4: How do we calculate the area of a trapezoid?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I imagine that its sides are straight and I multiply the average altitudes with the width.

Confidence Assessment: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aWe think of the trapezoid being oriented so that its two parallel sides are vertical, and we multiply the average altitude by the width.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique Rating:

*********************************************

*********************************************

Question: `q016. Summary Question 5: How do we calculate the area of a circle?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: We use a formula

Area= pi r^2

Pi is 3.14*radius squared

Confidence Assessment: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aWe use the formula A = pi r^2, where r is the radius of the circle.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique Rating:

*********************************************

*********************************************

Question: `q017. Summary Question 6: How do we calculate the circumference of a circle? How can we easily avoid confusing this formula with that for the area of the circle?

*********************************************

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

We use the other formula

c= 2 pi r

We just memorize the formulas curcumference and radius. If you sort of reverse them they are easily confused.

Confidence Assessment: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

.............................................

Given Solution:

`aWe use the formula C = 2 pi r. The formula for the area involves r^2, which will give us squared units of the radius. Circumference is not measured in squared units.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

Self-critique Rating:

*********************************************

*********************************************

Question: `q018. Explain how you have organized your knowledge of the principles illustrated by the exercises in this assignment.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I do it one step at a time, but everything does seem to go together. I try to gather all the information gradually.

Self-critique Rating: 3

&#Good responses. Let me know if you have questions. &#"

the preceding line shows that this is apparently a copy of my posted response