assignment 7

course MTH 272

7/1 9 pm

If your solution to a stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution: If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

007. `query 7

*********************************************

Question: `q5.2.2. (previously 5.2.36 (was 5.2.34) ) integral of x^2 (1-x^3)^2 by formal substitution.

What is the integral of the given function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Add one t exp. And divide by new emponent.

Divide out by number.

-1/3 u^2 du

= -1/7 (1-x^3)^3 +c=final answer.

Confidence rating:1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a If we let u = 1 - x^3 then u ' = - 3 x^2 and the x^2 in our integrand is - u ' / 3.

(1-x^3)^2 is u^2, so the integrand is - u ' / 3 * u^2 = -1/3 u^3 u ' .

So the integral is you have -1/3 u^2 du. The integral of u^2 u ' is 1/3 u^3.

Thus the integral of -1/3 u^2 u ' is -1/3 of 1/3 u^3, or -1/9 u^3.

So your integral should be -1/9 u^3 = -1/9 (1-x^3)^3.

The general antiderivative is -1/9 ( 1 - x^3)^3 + c. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): makes more sense now

Self-critique Rating:

*********************************************

Question: `qWhat is the derivative of your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 13x +4

Confidence rating: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The derivative of -1/9 (1-x^3)^3, using the Chain Rule, is the product of -1/9, 3(1-x^3)^2, and the derivative -3x^2 of the 'inner function' (1-x^3). Multiplying these factors we get -1/9 (-3x^2) * 3(1-x^3)^2 = x^2 (1-x^3)^2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: `q 5.2.4 (previously 5.2.54 (was 5.2.52)) find x | dx/dp = -400/(.02p-1)^3, x=10000 when p=100

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: this type of problem was impossible for me. Spent very long on it and didn’t get anywhere.

Confidence rating: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The equation rearranges to dx = -400 * dp * (.02 p - 1)^-3. An antiderivative of the left-hand side could be just x.

An antiderivative of dp * (.02 p - 1)^-3 is found using u = .02 p - 1, so du = .02 dp and dp = du / .02 = 50 du. Thus the right-hand side becomes -400 * 50 u^-3 du = -20000 u^-3 du, with antiderivative 20000 / 2 * u^-2 + c = 10,000 u^-2 + c.

So we have x = 10,000 * u^-2 + c = 10,000 * (.02 p - 1)^-2 + c.

Note that dx / dp is therefore 10,000 * -2 * .02 (p-1)^-3 = -400 (.02 p - 1)^-3, consistent with the original equation.

Since x = 10,000 * (.02 p - 1)^-2 + c and x = 10,000 when p = 100 we have

10,000 = 10,000 * (.02 * 100 - 1)^2 + c

10,000 = 10,000 / 1^2 + c

10,000 = 10,000 + c so

c = 0.

The solution is therefore

x = 10,000 * (.02 p - 1)^-2 + 0 or just

x = 10,000 * (.02 p - 1)^-2.

**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): This helps somewhat, but still very difficult.

&#Your response did not agree with the given solution in all details, and you should therefore have addressed the discrepancy with a full self-critique, detailing the discrepancy and demonstrating exactly what you do and do not understand about the parts of the given solution on which your solution didn't agree, and if necessary asking specific questions (to which I will respond).

&#

Did you write out the equation on paper?

Did you write out the given solution on paper, using standard notation?

Self-critique Rating:

*********************************************

Question: `q5.3.1 (previously 5.3.04 (was 5.3.04)) integral of e^(-.25 x) by Exponential Rule

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

u = -.25 x so du/dx = -.25

integrate/ add 1 and divide by new exponent

Confidence rating: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Simple substitution u = -.25 x gives us du/dx = -.25 so that du = -.25 dx and dx = du / (-.25) = -4 du.

Our original integrand e^(-.25 x) dx therefore becomes e^u * (-4 du) = -4 e^u du. Our general antiderivative will be -4 e^u + c, meaning -4 e^(-.25 x) + c.

The derivative of -4 e^(-.25 x) + c is -4 ( -.25 e^-.25 x) = e^-.25 x, verifying our result.

The General Exponential Rule is equivalent to this:

u = -.25 x so du/dx = -.25. Thus the integral is of e^u / (du/dx) = e^(-.25 x) / (-1/4) = -4 e^(-.25 x). *&*&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

&#This also requires a self-critique.

&#

Self-critique Rating:

*********************************************

Question: `q 5.3.2 (previously 5.3.10 (was 5.3.10)) integral of 3(x-4)e^(x^2-8x) by Exponential Rule

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3(x-4)-(x)

X^9 =e

=3x^2+8

Confidence rating: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a if u=x^2 - 8x then du / dx = 2x - 8

x-4 = 1/2(2x-8) so 3(x-4) = 3/2 du/dx.

Thus 3(x-4)e^(x^2-8x) is 3/2 e^u du/dx.

The general antiderivative of e^u du/dx is e^u + c, so the integral of 3/2 e^u du/dx is 3/2 e^u.

Substituting x^2 - 8x for u we have 3/2 e^(x^2-8x) + c. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): these are so hard!

Self-critique Rating:

*********************************************

Question: `qproblem 5.3.3 (previously 5.3.16) integral of 1/(6x-5) by Log Rule

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: u=6x-5

Du=6

6dx/6x-5

1/6 s 6dx/6x-5

1/6ln [6x-5]+c

Confidence rating: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a du/dx is the derivative of 6x-5, so du/dx = 6

If we let u = 6x - 5 then du = 6 dx so dx = 1/6 du and the integral becomes that of 1/2 * ln(u) * du/6 = 1/3 ln(u) du

The integral of 1/3 ln(u) du is 1/3 * 1 / u = 1/3 * 1 / (6x-5) = 1 / [ 3(6x-5) ]. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I was close to this solution

Self-critique Rating:

*********************************************

Question: `q 5.3.5 (previously problem 5.3.22 (was 5.3.20)) integral of x/(x^2+4) by Log Rule

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x/(x^2+4)

u=x^2+4

du= 2x

2x/x^2+4

1/2lnx^2+4+c

Confidence rating: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a If we let u = x^2 + 4 we get du/dx = 2x so that the x in the numerator is 1/2 du/dx.

The integral of x / (x^2 + 4) is the integral of 1/2 * ( 2x / (x^2+4) ) = 1/2 (1/u du/dx).

The general antiderivative is therefore 1/2 ln(u) + c = 1/2 ln |x^2+4| + c. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): these are tough to remember the rules and use them.

Self-critique Rating:

*********************************************

Question: `qWhat is the derivative of your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 1/2x^2

Confidence rating: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The derivative of ln(x^2+4) * (1/2) is 1/2 * 2x * 1 / (x^2 + 4) or x / (x^2 + 4). This confirms that ln(x^2+4) * (1/2) is a solution to the equation.

The general antiderivative is of course ln(x^2+4) * (1/2) + c. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I didn’t derive it correctly as I thought I had.

Self-critique Rating:

*********************************************

Question: `q 5.3.7 (previously 5.3.28 (was 5.3.24) (was 5.3.24) ) integral of e^x/(1+e^x) by Log Rule

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: e^x/(1+e^x)

e/x +(e^x)

x+e

Confidence rating: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a let u = 1 + e^x. Then du/dx = e^x.

We are therefore integrating 1 / (1 + e^x) * e^x, which is 1/u du/dx.

The antiderivative is ln |u| + c = ln | 1 + e^x | + c. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): the rules are so difficult to keep track of

Self-critique Rating:

*********************************************

Question: `q 5.3.9 (previously 5.3.46 (was 5.3.34) (was 5.3.34) ) integral of (6x + e^x) `sqrt( 3x^2 + e^x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: sq rtu du

U^1/2 du

U^3/2/3/2

3x^2+e^x=u

6x+e^x=du

2/3u^3/2+c

2/3(3x^2+e^x)^3/2 +c

Confidence rating: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Here are two detailed solutions:

(6x + e^x) `sqrt( 3x^2 + e^x) = `sqrt(u) * du/dx = u^(1/2) du/dx.

The antiderivative is thus

2/3 u^(3/2) = 2/3 (3x^2 + e^x)^(3/2).

Alternatively

If u = 3x^2 + e^x then du = 6x + e^x and we have the integral of `sqrt(u) du, which is just

2/3 u^(3/2) + c = 2/3 (3x^2 + e^x)^(3/2) + c. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Self-critique Rating:

*********************************************

Question: `q 5.3.11 (previously 5.3.58 (was 5.3.54) (was 5.3.52) ) dP/dt = -125 e^(-t/20), t=0, P=2500 and interpretation.

Give your complete solution.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: dP/dt=-125e^(-t/20) t=0

P=2500

p = 2500 e^(-t/20) + c

2500 = 2500 + c and c = 0

So it’s the equation above without adding c

Confidence rating: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a If dP/dt = -125 e^(-t/20) then dp = -125 e^(-t/20) dt. Integrating both sides we get

p = 2500 e^(-t/20) + c ( to integrate the right-hand side start with u = -t / 20, etc.

If p = 2500 when t = 0 we have

2500 = 2500 e^(-0/20) + c so

2500 = 2500 + c and c = 0.

The final solution is thus

p = 2500 e^(-t/20)

After 15 days the population is p(15) = 2500 e^(-15/20) = 1000, give or take a couple hundred (you can evaluate the expression).

All the trout are considered dead when the population is below 1/2. So you need to solve 1/2 = 2500 e^(-t/20) for t.

Dividing both sides of this equation by 2500 then taking the natural log of both sides you get

-t/20 = ln( 1/2500 ) so

t = -20 * ln (1/2500) = -11 or -12 or so.

Thus t is about 200 days, give or take a little.

Alternative reasoning of the particular solution:

If u = -t/20 then e^u du/dt = e^(-t/20) * -1/20. -125 e^(-t/20) is 2500 * ( -1/20 e^(-t/20) ) = 2500 e^u du/dx.

The integral is 2500 e^u + c = 2500 e^(-t/20) + c.

If t = 0, P=2500 then 2500 = 2500 e^0 + c = 2500 + c, so c = 0. Thus the particular solution is

P = 2500 e^(-t/20).

Alternative solution for the time when all trout are dead:

2500 e^(-t/20) < .5 means

e^(-t/20) < .0002 so -t/20 < ln(.0002) so

-t < ln(.0002) * 20 so

-t < -170.34 and

t > 170.34.

The probability is that all trout are dead by day 171.

STUDENT QUESTION: I couldn't figure out the time for all the trout to die because the ln 0 is undefined

** When the population falls below 1/2 of a fish it rounds off to 0 and you assume that all the trout are dead.

You can think of this in terms of probability. The function doesn't really tell us the precise number but the probable number. When the probability is againt that last fish being alive we figure that it's most likely dead. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I ended up getting it right. Tough type of question though because of the use of a bunch of different concepts.

Self-critique Rating:

"

You are having some difficulty here, but you're also having some successes, so it seems clear you have a basis for mastering these procedures.

Please see my notes, especially where they pertain to self-critique. I suggest you repeat this exercises and include detailed self-critiques, according to the note and link at the beginning of the document. With detailed self-critiques I can better tell what you do and do not understand, and thereby build on what you dot know to clarify what you don't yet understand.