course MTH 272 7/5 11 pm If your solution to a stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: `a Dividing [1, 5] into four intervals each will have length ( 5 - 1 ) / 4 = 1. The four intervals are therefore [1, 2], [2, 3], [3, 4], [4,5]. The function values at the endpoints f(1) = 0, f(2) = .5, f(3) = .471, f(4) = .433 and f(5) = .4. The average altitudes of the trapezoids are therefore (0 + .5) / 2 = 0.25, (.5 + .471)/2 = 0.486, (.471 + .433) / 2 = 0.452 and (.433 + .4) / 2 = 0.417. height times width (*1=same as other values) 0.25, 0.486, 0.452, 0.417. add them all up = about 1.6 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I know it for the most part. Self-critique Rating: ********************************************* Question: `q5.6.32 (was 5.6.24 est pond area by trap and midpt (20 ft intervals, widths 50, 54, 82, 82, 73, 75, 80 ft). How can you tell from the shape of the point whether the trapezoidal or midpoint estimate will be greater? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I did not know how to solve this problem, unfortunately. Confidence rating: 0
.............................................
Given Solution: `a Since widths at 20-ft intervals are 50, 54, 82, 82, 73, 75, 80 ft the pond area can be approximated by a series of trapezoids with these altitudes. The average altitudes are therefore respectively (0 + 50 / 2) = 25 (50 + 54) / 2 = 52 (54 + 82) / 2 = 68 (82 + 82) / 2 = 82 etc., with corresponding areas 25 * 20 = 500 52 * 20 = 1040 etc., all areas in ft^2. The total area, according to the trapezoidal approximation, will therefore be 20 ft (25+52+68+82+77.5+74+77.5+40) ft = 9920 square feet. The midpoint widths would be calculated based on widths at positions 10, 30, 50, 70, ..., 150 ft. Due to the convex shape of the pond these estimates and will lie between the estimates made at 0, 20, 40, ..., 160 feet. The convex shape of the pond also ensures that the midpoint of each rectangle will 'hump above' the trapezoidal approximation, so the midpoint estimate will exceed the trapezoidal estimate. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):