Assignment 1 R1

#$&*

course Mth 158

6/5 430

Question: * R.1.26 \ was R.1.14 (was R.1.6) Of the numbers in the set {-sqrt(2), pi + sqrt(2), 1 / 2 + 10.3} which are counting numbers, which are rational numbers, which are irrational numbers and which are real numbers?YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Natural: None

Integers: None

Rational: 2+10.3

Irrational: -sqrt2, pi + sqrt2

Real: all of the numbers

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** Counting numbers are the numbers 1, 2, 3, .... . None of the given numbers are counting numbers

Rational numbers are numbers which can be expressed as the ratio of two integers. 1/2+10.3 are rational numbers.

Irrational numbers are numbers which can be expressed as the ratio of two integers. {-sqrt(2)}, pi+sqrt(2) are irrational numbers.. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: * R.1.44 \ 32 (was R.1.24) Write in symbols: The product of 2 and x is the product of 4 and 6

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2*X=4*6

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** The product of 2 and x is 2 * x and the product of 4 and 6 is 4 * 6. To say that these are identical is to say that 2*x=4*6. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question:

* R.1.62 \ 50 (was R.1.42) Explain how you evaluate the expression 2 - 5 * 4 - [ 6 * ( 3 - 4) ]

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I completed the parentheses first 3-4 equaling -1. I then distributed 6 into the parentheses coming up with -6. The problem now reads 2-5*4-(-6). I then multiplied 5*4 then completed the subtraction bringing my final answer to -12.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * **Starting with

2-5*4-[6*(3-4)]. First you evaluate the innermost group to get

2-5*4-[6*-1] . Then multiply inside brackets to get

2-5*4+6. Then do the multiplication to get

2-20+6. Then add and subtract in order, obtaining

-12. **

*********************************************

Question: * R.1.98 \ 80 (was R.1.72) Explain how you use the distributive property to remove the parentheses from the express (x-2)(x-4).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I first multiplied the X in the first parentheses by the X in the second parentheses. Next, I multiplied the X by 4. Then I multiplied 2 by X and then 2 by 4. My final equation came to X^2+X-2X-2.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** COMMON ERROR: Using FOIL. FOIL is not the Distributive Law. FOIL works for binomial expressions. FOIL follows from the distributive law but is of extremely limited usefulness and the instructor does not recommend relying on FOIL.

Starting with

(x-2)(x-4) ; one application of the Distributive Property gives you

x(x-4) - 2(x-4) . Applying the property to both of the other terms we get

x^2 - 4x - (2x -8). Simplifying:

x^2 - 4x - 2x + 8 or

x^2 - 6x + 8. *

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I used FOIL. I understand how you completed the problem.

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question:

* R.1.102 \ 86 (was R.1.78) Explain why (4+3) / (2+5) is not equal to 4/2 + 3/5.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

These equations are not equal to one another because one includes parentheses and the other does not. The parentheses changes the order in which we solve the problem. The first equals 1 and the second equals the fraction 2 3/5.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** Good answer but at an even more fundamental level it comes down to order of operations:

(4+3)/(2+5) means

7/7 which is equal to

1.

By order of operations, in which multiplications and divisions precede additions and subtractions,

4/2+3/5 means

(4/2) + (3/5), which gives us

2+3/5 = 2 3/5

* Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question:

* R.1.102 \ 86 (was R.1.78) Explain why (4+3) / (2+5) is not equal to 4/2 + 3/5.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

These equations are not equal to one another because one includes parentheses and the other does not. The parentheses changes the order in which we solve the problem. The first equals 1 and the second equals the fraction 2 3/5.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** Good answer but at an even more fundamental level it comes down to order of operations:

(4+3)/(2+5) means

7/7 which is equal to

1.

By order of operations, in which multiplications and divisions precede additions and subtractions,

4/2+3/5 means

(4/2) + (3/5), which gives us

2+3/5 = 2 3/5

* Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks good. Let me know if you have any questions. &#