Assignment 13 15

#$&*

course Mth 158

6/27 630

If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

013. `* 13

*********************************************

Question: * 1.5.34 (was 1.5.24). How did you write the interval [0, 1) using an inequality with x? Describe your illustration using the number line.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The graph would have 0 and 1 plotted on the number line with a closed dot at 0 and an open dot connecting to 1.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * My notes here show the half-closed interval [0, 1).

When sketching the graph you would use a filled dot at x = 0 and an unfilled dot at x = 1, and you would fill in the line from x = 0 to x = 1. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: * 1.5.40 (was 1.5.30). How did you fill in the blank for 'if x < -4 then x + 4 ____ 0'?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

<

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * if x<-4 then x cannot be -4 and x+4 < 0.

Algebraically, adding 4 to both sides of x < -4 gives us x + 4 < 0. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: * 1.5.46 (was 1.5.36). How did you fill in the blank for 'if x > -2 then -4x ____ 8'?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-4x<8

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * if x> -2 then if we multiply both sides by -4 we get

-4x <8.

Recall that the inequality sign has to reverse if you multiply or divide by a negative quantity. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 1.5.58 (was 1.5.48). Explain how you solved the inquality 2x + 5 >= 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2x + 5 > 1

Subtract 5 from both sides

2x > -4

Divide by two on both sides

X > -2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

2x+5>= 1 we add -5 to both sides to get

2x>= -4, the divide both sides by 2 to get the solution

x >= -2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: * 1.5.64 (was 1.5.54). Explain how you solved the inquality 8 - 4(2-x) <= 2x.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

8 - 4(2-x) <= 2x

Distribute the four into the parentheses

8-8+4x< 2x

4x<2x

Subtract 2x from both sides

2x<0

Divide by 2 on both sides

X<0

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 3

* * 8- 4(2-x)<= 2x. Using the distributive law:

8-8+4x<= 2x . Simplifying:

4x<=2x . Subtracting 2x from both sides:

2x<=0. Multiplying both sides by 1/2 we get

x<=-0 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): Why did you multiply both sides by ½ in the last step instead of dividing by 2? Can 0 be negative?

------------------------------------------------

Self-critique Rating: 2

@&

Multiplying by 1/2 is the same as dividing by 2.

The properties of multiplication are more familiar than the properties of division, so if you're confused this idea can come in handy.

0 can't be negative, mainly because there would be no point to that. If you multiply by 0 you get 0, and it would be the same whether 0 was considered positive or negative. You can't divide by 0 so that wouldn't change if 0 was negative. Adding 0 to a number gives you the same number, the same result as if you had subtracted 0 from the number.

*@

*********************************************

Question: * 1.5.76 (was 1.5.66). Explain how you solved the inquality 0 < 1 - 1/3 x < 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Separate into two equations:

0<1-1/3x and 1-1/3x<1

Subtract 1 from each side to get:

0<-1/3x and -1/3<1

confidence rating #$&*: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

0<1- 1/3x<1 we can separate this into two inequalities, both of which must hold:

0< 1- 1/3x and 1- 1/3x < 1. Subtracting 1 from both sides we get

-1< -1/3x and -1/3x < 0. We solve these inequalitites separately:

-1 < -1/3 x can be multiplied by -3 to get 3 > x (multiplication by the negative reverses the direction of the inequality)

-1/3 x < 0 can be multiplied by -3 to get x > 0.

So our inequality can be written 3 > x > 0. This is not incorrect but we usually write such inequalities from left to right, as they would be seen on a number line. The same inequality is expressed as

0 < x < 3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I had no idea what to do after my final step. I still don’t understand why you multiply the fraction by -3?

------------------------------------------------

Self-critique Rating: 0

@&

We need to solve the inequality for x, not for 1/3 x or -1/3 x.

*@

*********************************************

Question: * 1.5.94 (was 1.5.84). Explain how you found a and b for the conditions 'if -3 < x < 3 then a < 1 - 2x < b.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Add 1 to each side:

1+6>1-2x>1-6

7>1-2x>5

Switch the problem around

-5<1-2x<7

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Adding 1 to each expression gives us

1 + 6 > 1 - 2x > 1 - 6, which we simplify to get

7 > 1 - 2x > -5. Writing in the more traditional 'left-toright' order:

-5 < 1 - 2x < 7. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: * 1.5.106 (was 1.5.96). Explain how you set up and solved an inequality for the problem. Include your inequality and the reasoning you used to develop the inequality. Problem (note that this statement is for instructor reference; the full statement was in your text) commision $25 + 40% of excess over owner cost; range is $70 to $300 over owner cost. What is range of commission on a sale?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The owner’s cost is x since it is unknown.

$70 to $300 is our range so the inequality is written as

70

You multiply each by .40 + $25 and you get

53<.40x+25<145

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * If x = owner cost then

70 < x < 300.

.40 * owner cost is then in the range

.40 * 70 < .40 x < .40 * 300 and $25 + 40% of owner cost is in the range

25 + .40 * 70 < 25 + .40 x < 25 + .40 * 300 or

25 + 28 < 25 + .40 x < 25 + 120 or

53 < 25 + .40 x < 145. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: * 1.5.123 \ 112. Why does the inequality x^2 + 1 < -5 have no solution?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X^2+1<-5

Subtract 1 from each side giving you

X^2<-4

To get rid of the square you must take the square root of each side. There is no solution because you cannot take the square root of a negative number.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION: x^2 +1 < -5

x^2 < -4

x < sqrt -4

can't take the sqrt of a negative number

INSTRUCTOR COMMENT: Good.

Alternative: As soon as you got to the step x^2 < -4 you could have stated that there is no such x, since a square can't be negative. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good responses. See my notes and let me know if you have questions. &#