Assignment 18 23

#$&*

course Mth 158

125 7/1

If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

018. `* 18

*********************************************

Question: * 2.3.34 / 30 (was 2.3.24). Slope 4/3, point (-3,2)

Give the three points you found on this line and explain how you obtained them.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First you take the original point (-3, 2) and add

(-3+3), (2+4)

(0,6)

Next take the opposite

(-3+-3), (2+-4)

(-6, -2)

Now, take the first point and add the slope to it

(6+4) (0+3)

(10, 3)

So our three points on the line are (0,6) (-6, -2) (10,3)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION:

(-3,2) slope 4/3. Move 3 units in the x direction, 4 in the y direction to get

((-3+3), (2+4)), which simplifies to

(0,6)

(-3,2) slope 4/3 = -4/-3 so move -3 units in the x direction and -4 in the y direction to get

((-3-3), (2-4)) which simplifies to

(-6,-2)

From (0,6) with slope 4/3 we move 4 units in the y direction and 3 in the x direction to get

((0+3), (6+4)), which simplifies to

(3,10). The three points I obtained are

(-6,-2), (0,6), (3,10).

* 2.3.40 / 36 (was 2.3.30). Line thru (-1,1) and (2,2) **** Give the equation of the line and explain how you found the equation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Find the slope:

Y2-y1/ x2-x1

(2-1)/((2-(-1))

Slope = 1/3

Plug 1/3 in for the point slope form:

y-y1=m(x-x1)

y-1=1/3 (x+1)

Distribute into the parentheses:

y-1=1/3x+4/3

y=1/3x+4/3

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION: The slope is m = (y2 - y1) / (x2 - x1) = (2-1)/(2- -1) = 1/3.

Point-slope form gives us

y - y1 = m (x - x1); using m = 1/3 and (x1, y1) = (-1, 1) we get

y-1=1/3(x+1), which can be solved for y to obtain

y = 1/3 x + 4/3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: * 2.3.54 / 46 (was 2.3.40). x-int -4, y-int 4 * * ** What is the equation of the line through the given points and how did you find the equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The two points are (0,4) and (4,0). The slope would be (0-4)/(4-0)= -1. You then plug this into the formula y=mx+b which would be y=-1x+4 simplifying to y= -x+4.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION: The two points are (0, 4) and (4, 0). The slope is therefore m=rise / run = (4-0)/(0+4) = 1.

The slope-intercept form is therefore y = m x + b = 1 x + 4, simplifying to

y=x+4.

STUDENT QUESTION

I obtained

-x + y = 4 or y = x + 4.

I followed the example in the book which leaves 2 solutions (example problem 2.3.51) Did I do it correctly?

INSTRUCTOR RESPONSE

Both your solutions represent the same line, and both are correct.

y = 1x + 4 means the same thing as y = x + 4; we rearrange this to -x + y = 4 (just subtract x from both sides).

• -x + y = 4 is a 'standard form' of the equation of this line.

• y = x + 4 is the 'slope-intercept' form of the equation.

You don't need to know this, but still another 'standard form' is obtained by subtracting 4 from both sides of the equation -x + y = 4, giving us

-x + y - 4 = 0.

In this form we often want the coefficient of x to be positive, so we multiply both sides by -1 to get

x - y + 4 = 0.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: * 2.3.76 / 56 (was 2.4.48). y = 2x + 1/2. **** What are the slope and the y-intercept of your line and how did you find them?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The slope is 2. The x=0 when the y intercept intersects so you plug 0 in for x and solve for y.

Y=2(0)+1/2

Y=1/2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * the y intercept occurs where x = 0, which happens when y = 2 (0) + 1/2 or y = 1/2. So the y-intercept is (0, 1/2).

The slope is m = 2.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: * 2.3.62 / 22 (was 2.4.18) Parallel to x - 2 y = -5 containing (0,0) **** Give your equation for the requested line and explain how you obtained it.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Solve for y.

x-2y=-5

y= -5/2-x

y-0=-5/2*(x-0)

y=-5/2x

confidence rating #$&*: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The equation x - 2y = -5 can be solved for y to give us

y = 1/2 x + 5/2.

A line parallel to this will therefore have slope 1/2.

Point-slope form gives us

y - 0 = 1/2 * (x - 0) or just

y = 1/2 x. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): Could you put the steps for solving for y in the beginning of the problem? I do not understand where the ½ came from?

------------------------------------------------

Self-critique Rating: 1

*********************************************

Question: * 2.3.68 / 28 (was 2.4.24) Perpendicular to x - 2 y = -5 containing (0,4) **** Give your equation for the requested line and explain how you obtained it.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Solve for y like the problem above.

Input ½ slope into the point form formula:

y-4=1/2(x-0)

y=1/2x+4.5

confidence rating #$&*: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The equation x - 2y = -5 can be solved for y to give us

y = 1/2 x + 5/2.

A line perpendicular to this will therefore have slope -2/1 = -2.

Point-slope form gives us

y - 4 = -2 * (x - 0) or

y = -2 x + 4. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): Again, I do not understand how the slope ended up being ½ and why did the slope change from ½ to -2?

------------------------------------------------

Self-critique Rating: 1

@&

If you solve the equation x - 2 y = -5 for y you get y = 1/2 x + 5/2, as indicated in the given solution.

Perpendicular lines have negative reciprocal slopes, so the slope of the line perpendicular to this line is the negative reciprocal of 1/2. The slope is thus -1 / (1/2) = -2.

*@

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks good. See my notes. Let me know if you have any questions. &#