Ch114 Query Assignment

#$&*

course MTH 152

2/18 7:30

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution.

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

004. `query 4

question 11.4.6 Find C(9,6) on Pascal's triangle.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution: C(9,6) n=9 and r=6. Therefore you have the 10th row and the 7th number in the row.

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:: ** C(9, 6) occurs in the n=9 row, the r=6 position of Pascal’s Triangle, which is the 10th row and the 7th number in the row.

C(9,6) = 9! / ( 6! (6-3)! ) = 9*8*7 / (3*2*1) = 3 * 4 * 7 = 84 does agree with the number in the n = 9 row and the r = 6 position.

(Note that since the first row is row 0 and the first element in every row is element 0, the n = 9 row is the 10th row, and the r = 6 position is the 7th number from the left.) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

question 11.4.18 clueless check of four of nine possible classrooms.

How many of the possible selections will fail to locate the classroom?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your Solution: C(9,4) giving you 126 possible choices

Fail to locate: C(8,4) giving you 70 possible choices to fail to locate classroom

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:: ** There are C(9,4) possible combinations of the four classrooms to be checked.

There are 8 'incorrect' classrooms, so there are C(8, 4) ways for the check of 4 rooms to yield a 'wrong' classroom.

C(9,4) = 126 and C(8,4) = 70.

So there are 126 possible combinations of the four classrooms to be checked, and 70 of these combinations fail to include the ‘right’ classroom.

Thus only 126 - 70 = 56 of the possible combinations will include the ‘right’ classroom.

So the chance of finding the right classroom is 56 / 126, a little less than 50%.

STUDENT QUESTION

Can you work out how C (9,4) = 126 and how C (8,4) = 70??? Where did I go wrong??? I worked them out the way

I thought I should. Am I getting combinations confused with permutations, or do I just have it totally wrong???

INSTRUCTOR RESPONSE

I think you have mixed up permutations and combinations. You calculuated 9! / (9-4)!..

To clarify:

C(9, 4) = 9! / ( 4! * (9-4)! ), not 9! / (9-4)!.

9! / (9-4)! = 9 * 8 * 7 * 6, which is the number of possible ordered choices of 4 objects chosen from among 9. This is the permutation.

To get the number of unordered choices, you would divide the number of ordered choices by 4! (since every set of 4 choices could have appeared in any of 4! orders).

So instead of 9! / (9-4)!., you would divide this by 4! to get 9! / ( 4! (9-4)! ).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK