Step 3 Orientation

course mth 173

hello

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

002. Describing Graphs

Question: **** `q001. You will frequently need to describe the graphs you have constructed in this course. This exercise is designed to get you used to some of the terminology we use to describe graphs. Please complete this exercise and email your work to the instructor. Note that you should do these graphs on paper without using a calculator. None of the arithmetic involved here should require a calculator, and you should not require the graphing capabilities of your calculator to answer these questions.

Problem 1. We make a table for y = 2x + 7 as follows: We construct two columns, and label the first column 'x' and the second 'y'. Put the numbers -3, -2, -1, -, 1, 2, 3 in the 'x' column. We substitute -3 into the expression and get y = 2(-3) + 7 = 1. We substitute -2 and get y = 2(-2) + 7 = 3. Substituting the remaining numbers we get y values 5, 7, 9, 11 and 13. These numbers go into the second column, each next to the x value from which it was obtained. We then graph these points on a set of x-y coordinate axes. Noting that these points lie on a straight line, we then construct the line through the points.

Now make a table for and graph the function y = 3x - 4.

Identify the intercepts of the graph, i.e., the points where the graph goes through the x and the y axes.

*********************************************

Your solution:

x y

-3 -13

-2 -10

-1 -7

1 -1

2 2

3 5

The x-int is (4/3, 0). You find the x-int by solving for x and making y = 0. The y-int is (0, -4) this is done the same way just with x = 0 then solving for y.

.............................................

Given Solution:

`aThe graph goes through the x axis when y = 0 and through the y axis when x = 0.

The x-intercept is therefore when 0 = 3x - 4, so 4 = 3x and x = 4/3.

The y-intercept is when y = 3 * 0 - 4 = -4. Thus the x intercept is at (4/3, 0) and the y intercept is at (0, -4).

Your graph should confirm this.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating: 3

Question: **** `q002. Does the steepness of the graph in the preceding exercise (of the function y = 3x - 4) change? If so describe how it changes.

*********************************************

Your solution:

The points form a linear graph, which is a straight line so there are no changes.

.............................................

Given Solution:

`aThe graph forms a straight line with no change in steepness.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating: 3

Question: **** `q003. What is the slope of the graph of the preceding two exercises (the function ia y = 3x - 4;slope is rise / run between two points of the graph)?

*********************************************

Your solution:

Rise/run is 3/1= 3. I looked back at my graph and counted manually from the points on my graph.

.............................................

Given Solution:

`aBetween any two points of the graph rise / run = 3.

For example, when x = 2 we have y = 3 * 2 - 4 = 2 and when x = 8 we have y = 3 * 8 - 4 = 20. Between these points the rise is 20 - 2 = 18 and the run is 8 - 2 = 6 so the slope is rise / run = 18 / 6 = 3.

Note that 3 is the coefficient of x in y = 3x - 4.

Note the following for reference in subsequent problems: The graph of this function is a straight line. The graph increases as we move from left to right. We therefore say that the graph is increasing, and that it is increasing at constant rate because the steepness of a straight line doesn't change.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating: 3

Question: **** `q004. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

*********************************************

Your solution:

Both the x and y values are increasing. The graph is increasing at and increasing rate because the y values are increasingly increasing. This is shown by the difference in the points. (0,0) (1,1)difference of 1 (2,4) difference of 3 (3,9) difference of 5 The steepness of the graph is increasing.

.............................................

Given Solution:

`aGraph points include (0,0), (1,1), (2,4) and (3,9). The y values are 0, 1, 4 and 9, which increase as we move from left to right.

The increases between these points are 1, 3 and 5, so the graph not only increases, it increases at an increasing rate

STUDENT QUESTION: I understand increasing...im just not sure at what rate...how do you determine increasing at an increasing rate or a constant rate?

INSTRUCTOR RESPONSE: Does the y value increase by the same amount, by a greater amount or by a lesser amount every time x increases by 1?

In this case the increases get greater and greater. So the graph increases, and at an increasing rate. *&*&.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating:3

Question: **** `q005. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = -3 and x = 0.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

*********************************************

Your solution:

This graph is decreasing at a decreasing rate. This goes backwards of the last example in that the decreasing action goes from 5 to 3 to 1 therefore that is decreasingly decreasing. The steepness is decreasing.

x y

-3 9

-2 4

-1 1

0 0

.............................................

Given Solution:

`aFrom left to right the graph is decreasing (points (-3,9), (-2,4), (-1,1), (0,0) show y values 9, 4, 1, 0 as we move from left to right ). The magnitudes of the changes in x from 9 to 4 to 1 to 0 decrease, so the steepness is decreasing.

Thus the graph is decreasing, but more and more slowly. We therefore say that the graph is decreasing at a decreasing rate.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating:3

Question: **** `q006. Make a table of y vs. x for y = `sqrt(x). [note: `sqrt(x) means 'the square root of x']. Graph y = `sqrt(x) between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

*********************************************

Your solution:

This graph is increasing at and decreasing rate. The rate is not as much as the last example but it is still increasing by small increments. The steepness is decreasing.

x y

0 0

1 1

2 1.4142

3 1.7321

.............................................

Given Solution:

`aIf you use x values 0, 1, 2, 3, 4 you will obtain graph points (0,0), (1,1), (2,1.414), (3. 1.732), (4,2). The y value changes by less and less for every succeeding x value. Thus the steepness of the graph is decreasing.

The graph would be increasing at a decreasing rate.

If the graph respresents the profile of a hill, the hill starts out very steep but gets easier and easier to climb. You are still climbing but you go up by less with each step, so the rate of increase is decreasing.

If your graph doesn't look like this then you probably are not using a consistent scale for at least one of the axes. If your graph isn't as desribed take another look at your plot and make a note in your response indicating any difficulties.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating: 3

Question: **** `q007. Make a table of y vs. x for y = 5 * 2^(-x). Graph y = 5 * 2^(-x) between x = 0 and x = 3.

Would you say that the graph is increasing or decreasing?

Does the steepness of the graph change and if so, how?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

*********************************************

Your solution:

This graph is decreasing at a decreasing rate. The changes in the y values are getting smaller while the actual values for y are decreasing as well.

x y

0 5

1 2.5

2 1.25

3 0.625

.............................................

Given Solution:

`a** From basic algebra recall that a^(-b) = 1 / (a^b).

So, for example:

2^-2 = 1 / (2^2) = 1/4, so 5 * 2^-2 = 5 * 1/4 = 5/4.

5* 2^-3 = 5 * (1 / 2^3) = 5 * 1/8 = 5/8. Etc.

The decimal equivalents of the values for x = 0 to x = 3 will be 5, 2.5, 1.25, .625. These values decrease, but by less and less each time.

The graph is therefore decreasing at a decreasing rate. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating:

Question: **** `q008. Suppose you stand still in front of a driveway. A car starts out next to you and moves away from you, traveling faster and faster.

If y represents the distance from you to the car and t represents the time in seconds since the car started out, would a graph of y vs. t be increasing or decreasing?

Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?

*********************************************

Your solution:

Increasing at and increasing rate, because the car is moving farther and farther away from me at a faster and faster rate.

.............................................

Given Solution:

`a** The speed of the car increases so it goes further each second. On a graph of distance vs. clock time there would be a greater change in distance with each second, which would cause a greater slope with each subsequent second. The graph would therefore be increasing at an increasing rate. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

Self-critique Rating:3

&#Good responses. Let me know if you have questions. &#