assignment 3

#$&*

course mth 158

003. `*   3 

 

*********************************************

Question: *   R.3.16 \ 12 (was R.3.6) What is the hypotenuse of a right triangle with legs 14 and 48 and how did you get your result?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

 a^2 + b^ = c^2

so , 14^= 196

48^ = 2304

196 + 2304 = 2500

c^2 = 2500

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  ** The Pythagorean Theorem tells us that

 

c^2 = a^2 + b^2,

 

where a and b are the legs and c the hypotenuse.

Substituting 14 and 48 for a and b we get

 

c^2 = 14^2 + 48^2, so that

c^2 = 196 + 2304 or

c^2 = 2500.

 

This tells us that c = + sqrt(2500) or -sqrt(2500).

 

Since the length of a side can't be negative we conclude that c = +sqrt(2500) = 50. **

*********************************************

Question: 

*   R.3.22 \ 18 (was R.3.12). Is a triangle with legs of 10, 24 and 26 a right triangle, and how did you arrive at your answer?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

yes

a^2 + b^ = c^2 for right triangle

so, does 26^2 = 10^2 + 24^2?

26^2 = 676

10^ = 100

24^2 = 576

100 + 576 = 676

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  ** Using the Pythagorean Theorem we have

 

c^2 = a^2 + b^2, if and only if the triangle is a right triangle.

 

Substituting we get

 

26^2 = 10^2 + 24^2, or

676 = 100 + 576 so that

676 = 676

 

This confirms that the Pythagorean Theorem applies and we have a right triangle. **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: 

 

 

*   R.3.34 \ 30 (was R.3.24). What are the volume and surface area of a sphere with radius 3 meters, and how did you obtain your result?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

v = 4/3 x pi x r^3

 r^3 = 3m^3 = 27m^3

v = 4/3 x 3.14 x 27m^3

63.58

 

sa = 4 x pi x r^2

r^2 = 3m^2 = 9m^2

sa = 4 x 3.14 x 9

 113.04

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  ** To find the volume and surface are a sphere we use the given formulas:

 

Volume = 4/3 * pi * r^3

V = 4/3 * pi * (3 m)^3

V = 4/3 * pi * 27 m^3

V = 36pi m^3

 

Surface Area = 4 * pi * r^2

S = 4 * pi * (3 m)^2

S = 4 * pi * 9 m^2

S = 36pi m^2. **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 what happened? D:

------------------------------------------------

Self-critique Rating: 0

*********************************************

Question: 

 

*   R.3.50 \ 42 (was R.3.36). A pool of diameter 20 ft is enclosed by a deck of width 3 feet. What is the area of the deck and how did you obtain this result?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a = pi x r^2

deck a = total a - pool a

total diameter of pool = 20

radius pool only = 10

r including deck = 13ft

total a = 3.14 x 13^2 = 3.14 x 169 = 530.66

area of pool only = 3.14 x 10^2 = 314

 530.66 - 314 = 216.66

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Think of a circle of radius 10 ft and a circle of radius 13 ft, both with the same center. If you 'cut out' the 10 ft circle you are left with a 'ring' which is 3 ft wide. It is this 'ring' that's covered by the deck.  The 10 ft. circle in the middle is the pool.

 

The deck plus the pool gives you a circle of radius 10 ft + 3 ft = 13 ft.

 

The area of the deck plus the pool is therefore

 

area = pi r^2 = pi * (13 ft)^2 = 169 pi ft^2.

 

So the area of the deck must be

 

deck area = area of deck and pool - area of pool = 169 pi ft^2 - 100 pi ft^2 = 69 pi ft^2. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: 

 

*   R.3.50 \ 42 (was R.3.36). A pool of diameter 20 ft is enclosed by a deck of width 3 feet. What is the area of the deck and how did you obtain this result?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a = pi x r^2

deck a = total a - pool a

total diameter of pool = 20

radius pool only = 10

r including deck = 13ft

total a = 3.14 x 13^2 = 3.14 x 169 = 530.66

area of pool only = 3.14 x 10^2 = 314

 530.66 - 314 = 216.66

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Think of a circle of radius 10 ft and a circle of radius 13 ft, both with the same center. If you 'cut out' the 10 ft circle you are left with a 'ring' which is 3 ft wide. It is this 'ring' that's covered by the deck.  The 10 ft. circle in the middle is the pool.

 

The deck plus the pool gives you a circle of radius 10 ft + 3 ft = 13 ft.

 

The area of the deck plus the pool is therefore

 

area = pi r^2 = pi * (13 ft)^2 = 169 pi ft^2.

 

So the area of the deck must be

 

deck area = area of deck and pool - area of pool = 169 pi ft^2 - 100 pi ft^2 = 69 pi ft^2. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

@&

Good work.

You do need to include your access code when you submit work, and it needs to be copied from a text file. I mention the text file because you have submitted an access code from some other type of file, which does not represent correctly in the browser. If I don't catch this, it will lead to your submissions being deleted.

*@