Assignment 6

course Mth 163

10/14 10

006. `query 6

*********************************************

Question: `qQuery 4 basic function families

What are the four basic functions?

What are the generalized forms of the four basic functions?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = x (linear)

y = x2 (quadratic)

y = 2x(exponential)

y = xp( power)

confidence rating:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT RESPONSE:

Linear is y=mx+b

Quadratic is y=ax^2 + bx +c

Exponential is y= A*2^ (kx)+c

Power = A (x-h)^p+c

INSTRUCTOR COMMENTS:

These are the generalized forms. The basic functions are y = x, y = x^2, y = 2^x and y = x^p. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qFor a function f(x), what is the significance of the function A f(x-h) + k and how does its graph compare to that of f(x)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A is constant that the equations is multiplied by which stretches the graph.

h and k are the coordinates that tell how the graph is shifted. The h is for the x axis stretch and the k is for the y axis shift. The two graphs are similar but the h and k values change the graph along the x and y axis.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT RESPONSE: A designates the x strectch factor while h affects a y shift & k affects an x shift

INSTRUCTOR COMMENTS:

k is the y shift for a simple enough reason -- if you add k to the y value it raises the graph by k units.

h is the x shift. The reason isn't quite as simple, but not that hard to understand. It's because when x is replaced by x - h the y values on the table shift 'forward' by h units.

A is a multiplier. When all y values are multiplied by A that moves them all A times as far from the x axis, which is what causes the stretch.

Thus A f(x-h) + k is obtained from f(x) by vertical stretch A, horizontal shift h and vertical shift k.

The two aren't the same, but of course they're closely related. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q query introduction to rates and slopes, problem 1 ave vel for function depth(t) = .02t^2 - 5t + 150

give the average rate of depth change from t = 20 to t = 40

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t = 20 then .02t2 – 5t + 150 = 58

t = 40 then .02 t2 – 5t + 150 = -18

So the depth (40) – depth (20) = -76

Depth change / time for change

-76 / 20 = -3.8

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** depth(20) = .02(20^2) - 5(20) + 150 = 58

depth(40) = .02(40^2) - 5(40) + 150 = -18

change in depth = depth(40) - depth(20) = -18 - 58 = -76

change in clock time = 40 - 20 = 20.

Ave rate of depth change = change in depth / change in clock time = -76 / 20 = -3.8 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the average rate of depth change from t = 60 to t = 80?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t = 60 then .02t2 – 5t + 150 = -78

t = 80 then .02t2 – 5t + 150 = -122

depth (80) – depth(60) = -44

depth change / time for change

-44 / 20 = -2.2

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** depth(60) = .02(60^2) - 5(60) + 150 = -78

depth(80) = .02(80^2) - 5(80) + 150 = -122

change in depth = depth(80) - depth(60) = -122 - (-78) = -44

change in clock time = 40 - 20 = 20.

Ave rate of depth change = change in depth / change in clock time = -44 / 20 = -2.2 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qdescribe your graph of y = .02t^2 - 5t + 150

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First this graph will be a parabola because the equation is in the quadratic formula. The vertex is at (125, -162.5). This was found by using the formula of –b/2a to find the x coordinate and then substituting that value into the equation and finding the y value. After finding the vertex I then found the other two basic points of the graph 1 unit to the right and left of the vertex. The point to the right was (126, -162.48) and the point to the left was (124, -162.48). This tells me that the parabola opens upward.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The graph is a parabola.

y = .02t^2 - 5t + 150 has vertex at x = -b / (2a) = -(-5) / (2 * .02) = 125, at which point y = .02 (125^2) - 5(125) + 150 = -162.5.

The graph opens upward, intercepting the x axis at about t = 35 and t = 215.

Up to t = 125 the graph is decreasing at a decreasing rate. That is, it's decreasing but the slopes, which are negative, are increasing toward 0.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qdescribe the pattern to the depth change rates

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The depth changes are as follows:

20 to 40 = -3.8

40 to 60 = - 3

60 to 80 = - 2.2

From each depth change the pattern is a drop of .8

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Rates are -3.8, -3 and -2.2 for the three intervals (20,40), (40,60) and (60,80).

For each interval of `dt = 20 the rate changes by +.8. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 2. ave rates at midpoint times

what is the average rate of depth change for the 1-second time interval centered at the 50 sec midpoint?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Depth change centered at a 50 sec midpoint for 1 second time would be 50.5 and 49.5.

Depth (50.5) = .02(50.5)2 – 5(50.5) + 150 = -51.495

Depth (49.5) = .02(49.5)2 – 5(49.5) + 150 = -48.495

Depth (50.5) – Depth (49.5) = -51.495 – (-48.495) = -3

Depth change / time = -3 / 1sec = -3

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The 1-sec interval centered at t = 50 is 49.5 < t < 50.5.

For depth(t) = .02t^2 - 5t + 150 we have ave rate = [depth(50.5) - depth(49.5)]/(50.5 - 49.5) = -3 / 1 = -3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qwhat is the average rate of change for the six-second time interval centered at the midpoint.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Depth from the midpoint of 50 for six seconds would be 53 and 47.

Depth (53) = .02(53)2 – 5(53) + 150 = -58.82

Depth (47) = .02(47)2 – 5(47) + 150 = - 40.82

Depth (53) – Depth (47) = -58.82 – (-40.82) = -18

Depth / time = -18 / 6 = -3

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The 6-sec interval centered at t = 50 is 47 < t < 53.

For depth(t) = .02t^2 - 5t + 150 we have ave rate = [depth(53) - depth(47)]/(53 - 47) = -18 / 6 = -3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat did you observe about your two results?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The average rate of change was the same for both problems no matter what the time was.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The two rates match each other, and they also match the average rate for the interval 40 < t < 60, which is also centered at t = 50.

For a quadratic function, and only for a quadratic function, the rate is the same for all intervals having the same midpoint. This is a property unique to quadratic functions. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 3. ave rates at midpt times for temperature function Temperature(t) = 75(2^(-.05t)) + 25.

What is the average rate of depth change for the 1-second time interval centered at the 50 sec midpoint?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Using 50.5 and 49.5

Temp (50.5) = 75 (2(-.05(50.5)) + 25 = 39.85

Temp (49.5) = 75 (2(-.05(49.5)) + 25 = 40.15

Temp (50.5) – Temp (49.5) = 39.85 – 40.15 = -.30

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE: .46 degrees/minute

INSTRUCTOR COMMENT: More precisely .4595 deg/min, and this does not agree exactly with the result for the 6-second interval.

Remember that you need to look at enough significant figures to see if there is a difference between apparently identical results.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

My numbers are a little off from the ones you have here. In doing this problem before in the exercise section however my numbers match at both the 1 sec and 6 sec intervals. Not real sure what I did wrong because the two number should not match up like before because it is not a quadratic function.

You show good detail, but it's not enough for me to tell where your error lies. However

f(50.5) = 38.03048331, f(49.5) = 38.49000231, and the difference is -0.4595190014.

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qwhat is the average rate of change for the six-second time interval centered at the midpoint.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This I know is wrong because I got the same interval that I did for the 1 sec. Here is my answer.

Temp (53) = 75 (2(-.05(53)) + 25 = 39.1509434

Temp (47) = 73 (2(-.05(47)) + 25 = 40.95744681

Temp (53) – temp (47) = -1.81 / 6 = -.30

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE: .46 degrees/minute

INSTRUCTOR COMMENT:

The 1- and 6-second results might possibly be the same to two significant figures, but they aren't the same. Be sure to recalculate these according to my notes above and verify this for yourself.

The average rate for the 6-second interval is .4603 deg/min. It differs from the average rate .4595 deg/min, calculated over the 1-second interval, by almost .001 deg/min.

This differs from the behavior of the quadratic. For a quadratic that the results for all intervals centered at the same point will all agree. This is not the case for the present function, which is exponential. Exact agreement is a characteristic of quadratic functions, and of no other type. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

Still unsure what I did wrong for this problem and the one before it.

"

&#Good responses. See my notes and let me know if you have questions. &#