#$&* course Mth 277 6/12/2012 around 4:00 am If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: To move from P to Q we must move in the x direction from x = 3 to x = -4, a displacement of -7 units. So the `i component of the vector PQ is -7. Reasoning similarly the j and k components are 6 and -6, respectively, so PQ = -7 i + 6 j - 6 k. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q002: What is the magnitude of the vector defined in the preceding problem? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: v = < -7,6,-6 > l v l = sqrt( (v_1)^2 + (v_2)^2 + (v_3)^2 ) = sqrt ( (-7)^2 + (6)^2 + (-6)^2 ) = sqrt ( 49 + 36 + 36 ) = sqrt ( 121 ) = 11 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The magnitude of the vector is found by the Pythagorean Theorem to be || PQ || = || -7 i + 6 j - 6 k || = sqrt( 7^2 + 6^2 + 6^2) = sqrt(121) = 11. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q003: What are the `i, `j and `k components of a unit vector in the direction of the vector PQ from the preceding two questions? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: unit vector = v / | v | v = < -7,6,-6 > so, unit vector = -7i + 6j - 6k / 11 = -7i/11 + 6j/11 - 6k/11 decimal approx. = -.64 i + .55 j - .55 k confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: When you divide a vector by a positive number it becomes shorter by a factor equal to that number. For example if you divide a vector by 2, you end up with a vector of half the magnitude. A unit vector in the direction of a given vector is therefore obtained by dividing that vector by its magnitude. A unit vector in the direction of PQ is therefore u = PQ / || PQ || = (-7 i + 6 j - 6 k) / 11 = -7/11 i + 6/11 j - 6/11 k. A decimal approximation to this vector is roughly -.64 i + .55 j - .55 k. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q004: What are the `i, `j and `k components of a vector parallel to PQ, having magnitude 20? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: unit vector = -7i/11 + 6j/11 -6k/11 the magnitude is 20 so you have to multiply the unit vector by the magnitude 20 = 20 (-7i/11 + 6j/11 - 6k/11) = -140i/11 + 120j/11 - 120k/11 decimal approx. = -12.73i + 10.91j - 10.91k confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: We have found a unit vector in the direction of PQ. To get a vector of magnitude 20 in the same direction we just multiply this unit vector by 20. The vector 20 ( -7/11 i + 6/11 j - 6/11 k) = -140 / 11 i + 120 / 11 j - 120 / 11 k. A decimal approximation is -12.7 i + 10.9 j - 10.9 k. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Let P = (3, 5) and Q = (-1, 10), with `A the vector whose initial point is P and whose terminal point is Q. `q005. Let `v be the vector from the origin to point P. Sketch the points P and Q and the vectors `v and `A. Then sketch the points at the tip of each of the following vectors, provided the initial point of each is the origin: `v + .5 `A, `v + 1.5 `A, `v + 2.5 `A. Based on your sketch mark your estimated locations of the terminal points of each of the following, assuming the initial point for each to be the origin: `v + 2 `A `v + 3 `A `v - 1.5 `A. Estimate the coordinates of the terminal points of these vectors, based on your sketch. Calculate the coordinates of the points. How well can you fit a straight line to these points? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Im not sure how to find the solution. If your giving the point P and Q, I thought you were able to find V1 and V2 and than use those two points on the vector to find the solution.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q006. Is each of the following true or false, and why? 4 `i - 3 `j = 4 `i - 2 `j 3 x `i - 5 `j = 6 `i - 5 `j if, and only if, x = 2 || 4 `i - 3 `j || = || 3 `i + 4 `j || c * (4 `i - 3 `j) = (12 `i + 9 `j) if c = 3. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 4 'i - 3 'j = 4 'i - 2 'j False: The problem states that both 'i and j' are identical on both sides but in theory both j' are not identical on both sides. on the left j' = -3 and on the right j' = -2 3 x 'i - 5 'j = 6 'i - 5 'j if, and only if, x = 2 True: 3x = 6 and -5 = -5. This is true only if x = 2 x = 2 |4 'i - 3 'j | = | 3 'i + 4 'j | True: sqrt ( 4^2 + -3^2 ) = sqrt ( 3^2 + 4^2 ) sqrt ( 25 ) = sqrt ( 25 ) 5 = 5 c * (4 'i - 3 'j) = (12 'i + 9 'j) if c = 3 False: if c = 3 the left side is not identical to the right side which makes it false. The 'j component is = -9 on the left side & the j' component is =9 on the right side 3 * (4 'i - 3 'j) = (12 'i - 9 'j) Confidence rating: 3
.............................................
Given Solution: The equation 4 `i - 3 `j = 4 `i - 2 `j states that the `i and `j components are identical on both sides. This is not so since the `j components on the left is -3 and the `j component on the right is -2. The equation 3 x `i - 5 `j = 6 `i - 5 `j if, and only if, x = 2 is true if and only if 3x = 6 and -5 = -5. The latter is clearly true, and the former is true if and only if x = 2. The equation || 4 `i - 3 `j || = || 3 `i + 4 `j || states that sqrt( 4^2 + (-3)^2) = sqrt( 3^2 + 4^2). Bot expression are equal to sqrt(25) = 5, so the equation is true. If c = 3 the equation c * (4 `i - 3 `j) = (12 `i + 9 `j) becomes 3 * (4 `i - 3 `j) = (12 `i + 9 `j) . The left-hand side would have `j component -9 and the right-hand side would have `j component +9. This is clearly not so, so the equation would be false for c = 3. In fact there is no value of c which makes the equation true, since this would require that 4 c = 12 and -3 c = 9. These two equations yield different results for c. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q007. Find the value(s) of c that make each of the following true. If no such value exists, explain why this is the case: c * ( 4 `i - 3 `j + 6 `k) = -48 `i + 36 `j - 72 `k c * || 4 `i + 3 `j - 6 `k || = || 6 `i - 4 `j + 3 `k || || 4 `i + 3 `j - 5 `k || = || 5 `i + 7 `j - c `k || YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: c * ( 4 `i - 3 `j + 6 `k) = -48 `i + 36 `j - 72 `k solution: c * (4i-3j+6k) = -48i+36j-72k c = -12 c * || 4 `i + 3 `j - 6 `k || = || 6 `i - 4 `j + 3 `k || Solution: c * sqrt( 4^2+3^2-6^2) = sqrt(6^2-4^2+3^2) c * sqrt(61) = sqrt (61) c = sqrt(61)/ sqrt(61) c = 1 || 4 `i + 3 `j - 5 `k || = || 5 `i + 7 `j - c `k || solution: sqrt (4^2+3^2-5^2) = sqrt (5^2+7^2-c^2) sqrt (50) = sqrt ( 74 + c^2 ) 50 = 74 + c^2 c^2 = -24 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: c * ( 4 `i - 3 `j + 6 `k) = -48 `i + 36 `j - 72 `k implies that 4 c = -48, -3 c = 36 and 6 c = -72. Each of these three equations yields solution c = -12, so this value of c solves the equation. c * || 4 `i + 3 `j - 6 `k || = || 6 `i - 4 `j + 3 `k || becomes c * sqrt( 4^3 + 3^2 + 6^2) = sqrt(6^2 + 4^2 + 3^2), i.e., c * sqrt(61) = sqrt(61), with solution c = sqrt(61) / sqrt(61) = 1. || 4 `i + 3 `j - 5 `k || = || 5 `i + 7 `j - c `k || becomes sqrt(4^2 + 3^2 + 5^2) = sqrt(5^2 + 7^2 + c^2), i.e., sqrt(61) = sqrt(64 + c^2). This is true if and only if 61 = 64 + c^2, yielding c^2 = -3. Since the square of any real number is positive, there is no real-number solution to this equation. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `q008. If theta = pi / 6, then what is the magnitude of the vector sin(theta) * `i + cos(theta) * `j? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: theta = pi/6 sin (theta) * 'i + cos (theta) * 'j |sin (theta)i + cos (theta)j| = sqrt (sin^2(pi/6) + cos^2(pi/6) ) = 1 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: sin(pi/6) `i + cos(pi/6) `j has magnitude || sin(pi/6) `i + cos(pi/6) `j || = sqrt( (sin^2(pi/6) + cos^2(pi/6) ). Since sin^2(theta) + cos^2(theta) = 1 for any value of theta, we get || sin(pi/6) `i + cos(pi/6) `j || = sqrt( (sin^2(pi/6) + cos^2(pi/6) ) = 1. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!