Query 24

course Phy 231

7/10 8:45

024. `query 24*********************************************

Question: `qWhy was it necessary to let the string go slack at the top of the circle in order to get the desired results?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

If you let it go slack, then the force on the object is equal to that of gravity. If it is not slack, then the force is greater.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** If the string goes slack just at the instant the weight reaches the 'top' of its circular path then we are assured that the centripetal acceleration is equal to the acceleration of gravity.

If there is tension in the string then the weight is being pulled downward and therefore toward the center by a force that exceeds its weight.

If the string goes slack before the weight reaches the top of its arc then the path isn't circular and our results won't apply to an object moving in a circular arc. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `qWhy do you expect that, if the string is released exactly at the top of the circle, the initial velocity of the washer will be horizontal?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The object will be at a maximum in its position, so the slope at that point will be 0 and the velocity will be horizontal. This is the same as looking at the derivative of the position function- at a maximum, the slope is 0 so the velocity is 0. Also, the velocity in a circle is perpendicular to the radius at that point.

exactly; the tangent vector is perpendicular to the radial vector

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The direction of an object moving in a circular arc is perpendicular to a radial line (i.e., a line from the center to a point on the circle). When the object is at the 'top' of its arc it is directly above the center so the radial line is vertical. Its velocity, being perpendicular to this vertical, must be entirely in the horizontal direction. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `qWhat is the centripetal acceleration of the washer at the instant of release, assuming that it is released at the top of its arc and that it goes slack exactly at this point, and what was the source of this force?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

9.8m/s^2 because the only acceleration will be due to gravity.

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** Under these conditions, with the string slack and not exerting any force on the object, the centripetal acceleration will be equal to the acceleration of gravity. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `qQuery principles of physics and general college physics 7.02. Delivery truck 18 blocks north, 10 blocks east, 16 blocks south. What is the final displacement from the origin?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y movement: 18 – 16 = 2 blocks N

X movement: 10 blocks E

Magnitude: sqrt(2^2 + 10^2) = 10.2 blocks

Direction: arctan(2/10) = 11.3 degrees

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe final position of the truck is 2 blocks south and 10 blocks east. This is equivalent to a displacement of +10 blocks in the x direction and -2 blocks in the y direction.

The distance is therefore sqrt( (10 blocks)^2 + (-2 blocks)^2 ) = sqrt( 100 blocks^2 + 4 blocks^2)

= sqrt(104 blocks^2)

= sqrt(104) * sqrt(blocks^2)

= 10.2 blocks.

The direction makes and angle of theta = arcTan(-2 blocks / (10 blocks) ) = arcTan(-.2) = -12 degrees

with the positive x axis, as measured counterclockwise from that axis. This puts the displacement at an angle of 12 degrees in the clockwise direction from that axis, or 12 degrees south of east.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `qQuery principles of physics and general college physics 7.18: Diver leaves cliff traveling in the horizontal direction at 1.8 m/s, hits the water 3.0 sec later. How high is the cliff and how far from the base does he land?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Ds = 0m/s(3s) + (1/2)(9.8m/s^2)(3s)^2

Ds = 44.1 meters high

Horizontal distance = 1.8m/s * 3s = 5.4 meters

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe diver's initial vertical velocity is zero, since the initial velocity is horizontal. Vertical velocity is characterized by the acceleration of gravity at 9.8 m/s^2 in the downward direction. We will choose downward as the positive direction, so the vertical motion has v0 = 0, constant acceleration 9.8 m/s^2 and time interval `dt = 3.0 seconds.

The third equation of uniformly accelerated motion tells us that the vertical displacement is therefore

vertical motion: `ds = v0 `dt + .5 a `dt^2 = 0 * 3.0 sec + .5 * 9.8 m/s^2 * (3.0 sec)^2 = 0 + 44 m = 44 m.

The cliff is therefore 44 m high.

The horizontal motion is characterized 0 net force in this direction, resulting in horizontal acceleration zero. This results in uniform horizontal velocity so in the horizontal direction v0 = vf = vAve. Since v0 = 1.8 m/s, vAve = 1.8 m/s and we have

horizontal motion: `ds = vAve * `dt = 1.8 m/s * 3.0 s = 5.4 meters.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `qGen phy 3.13 A 44 N at 28 deg, B 26.5 N at 56 deg, C 31.0 N at 270 deg. Give your solution to the problem.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Ax = 44cos28 = 38.85N Ay = 44sin28 = 20.66

Bx = 26.5cos56 = 14.82N By = 26.5sin56 = 21.97N

Cx = 31cos270 = 0N Cy = 31sin270 = -31N

Rx = 53.67N Ry = 11.63N

Magnitude: sqrt(53.67^2 + 11.63^2) = 54.9N

Direction = arctan(11.63 / 53.67) = 12.2 degrees

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The solution given here is for a previous edition, in which the forces are

Force A of 66 at 28 deg

Force B of B 40 at 56 deg

Force C of 46.8 at 270 deg

These forces are very close to 2/3 as great as the forces given in the current edition, and all correct results will therefore be very close to 2/3 as great as those given here.

Calculations to the nearest whole number:

A has x and y components Ax = 66 cos(28 deg) = 58 and Ay = 66 sin(28 deg) = 31

Bhas x and y components Bx = 40 cos(124 deg) = -22 and By = 40 sin(124 deg) = 33

C has x and y components Cx = 46.8 cos(270 deg) = 0 and Cy = 46.8 sin(270 deg) = -47

A - B + C therefore has components

Rx = Ax-Bx+Cx = 58 - (-22) + 0 = 80 and

Ry = Ay - By + Cy = 31-33-47=-49,

which places it is the fourth quadrant and gives it magnitude

`sqrt(Rx^2 + Ry^2) = `sqrt(80^2 + (-49)^2) = 94 at angle

tan^-1(Ry / Rx) = tan^-1(-49/53) = -32 deg or 360 deg - 32 deg = 328 deg.

Thus A - B + C has magnitude 93 at angle 328 deg.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: `qUniv. 3.58. Good guys in a car at 90 km/hr are following bad guys driving their car, which at a certain instant is 15.8 m in front of them and moving at a constant 110 km/hr; an electronic jamming device is thrown by the good guys at 45 deg above horizontal, as they observe it. This device must land in the bad guy's car. With what speed must the device be thrown relative to the good guys, and with what speed relative to the ground?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

V0y = .71v0 v0x - .71v0

V0ydt +.5(-g)(dt^2) = 0

Dt = 1.42 v0 / g

Dsx = .71 v0 dt

2d car = 20km/h faster = 5.56m/s

Dsx = x0rel + v0rel(dt)

Dsx = .17 v0 * 1.42 v0 / g = v0^2 / g

V0^2/g = x0rel+v0rel*1.42v0/g

V0 ^2 - v0rel *1.42v0 - g*x0rel = 0

V0 = 1.42v0rel +-sqrt(1.42 v0rel ^2 – 4(-g x0rel)) / 2

Substitute 15.8 and 5.56 in for x0 and v0

V0 = +17m/s

Initial x and y velocities: .71 * 17m/s = 12 m/s

Dt = 2(12m/s) / 9.8m/s^2 = 2.45 s

2.45s * 12m/s = 29.4 meters in the horizontal direction

confidence rating #$&*

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The device is thrown at velocity v0 at 45 deg, giving it v0y = .71 v0 and v0x = .71 v0.

The device will return to its original vertical position so we have `dsy = 0.

Using `dsy = v0y `dt + .5 g `dt^2 with `dsy = 0 and assuming the upward direction to be positive we obtain

v0y `dt + .5 (-g) `dt^2 = 0 so that

`dt = 0 or `dt = - 2 * v0y / (-g) = 2 * 71 v0 / g.

In time `dt the horizontal displacement relative to the car will be

`dsx = v0x `dt + ax `dt; since acceleration ax in the x direction and v0x = .71 v0 is zero we have

`dsx = .71 v0 * `dt.

We also know that relative to the first car the second is moving at 20 km / hr = 20,000 m / (3600 sec) = 5.55 m/s, approx.; since its initial position is 15.8 m in front of the first car we have

`dsx = 15.8 m + 5.55 m/s * `dt.

To keep the equations symbolic we use x0Relative and vRelative for the relative initial position and velocity of the second car with respect to the first.

We thus have three equations:

`dt = 2 * .71 v0 / g = 1.42 v0 / g.

`dsx = .71 v0 * `dt

`dsx = x0Relative + v0Relative * `dt.

This gives us three equations in the variables v0, `dt and `dsx, which we reduce to two by substituting the expression -2 to obtain:

`dsx = .71 v0 * 1.42 v0 / g = v0^2 / g

`dsx = x0Relative + v0Relative * 1.42 v0 / g.

Setting the right-hand sides equal we have

v0^2 / g = x0Relative + v0Relative * 1.42 v0 / g, or

v0^2 - v0Relative * 1.42 v0 - g * x0Relative = 0.

We get

v0 = [1.42 v0Relative +-sqrt( (1.42 v0Relative)^2 - 4 * (-g * x0Relative) ) ] / 2 =

[1.42 * v0Relative +-sqrt( (1.42 * v0Relative)^2 + 4 * g * x0Relative) ] / 2.

Substituting 5.55 m/s for v0Relative and 15.8 m for x0Relative we get

[1.42 * 5.55 m/s +-sqrt( (1.42 *5.55 m/s)^2 + 4 * 9.8 m/s^2 *15.8 m) ] / 2 =

17 m/s or -9.1 m/s, approx..

We conclude that the initial velocity with respect to the first case must be 17 m/s.

Checking this we see that the device will have initial x and y velocities 7.1 * 17 m/s = 12 m/s, approx., and will therefore stay aloft for 2 * 12 m/s / (9.8 m/s^2) = 2.4 sec, approx..

It will therefore travel 2.4 sec * 12 m/s = 28 m, approx. in the horizontal direction relative to the first car.

During this time the second car will travel about 5.55 m/s * 2.4 sec = 13 m, approx., resulting in relative position 15.8 m + 13 m = 28.8 m with respect to the first. This is reasonably close to the 28 m obtained from the motion of the projectile.

Correcting for roundoff errors will result in precise agreement. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&* OK

"

&#This looks good. See my notes. Let me know if you have any questions. &#

#$&*