#$&* course Phy 231 7/17 9 030. `query 30*********************************************
.............................................
Given Solution: `a** tau stands for torque and I stands for the moment of inertia. These quantities are analogous to force and mass. Just as F = m a, we have tau = I * alpha; i.e., torque = moment of inertia * angular acceleration. If we know the moment of inertia and the torque we can find the angular acceleration. If we multiply angular acceleration by time interval we get change in angular velocity. We add the change in angular velocity to the initial angular velocity to get the final angular velocity. In this case initial angular velocity is zero so final angular velocity is equal to the change in angular velocity. If we average initial velocity with final velocity then, if angular accel is constant, we get average angular velocity. In this case angular accel is constant and init vel is zero, so ave angular vel is half of final angular vel. When we multiply the average angular velocity by the time interval we get the angular displacement, i.e., the angle through which the object moves. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `qIf we know the initial angular velocity of a rotating object, and if we know its angular velocity after a given time, then if we also know the net constant torque accelerating the object, how would we find its constant moment of inertia? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: You find the average angular acceleration using the velocities and the time interval. Then you use the equation acceleration = torque / inertia. Solve for the moment of inertia after putting in the values for acceleration and torque. confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** From init and final angular vel you find change in angular vel (`d`omega = `omegaf - `omega0). You can from this and the given time interval find Angular accel = change in angular vel / change in clock time. Then from the known torque and angular acceleration we find moment of intertia. tau = I * alpha so I = tau / alpha. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `qHow do we find the moment of inertia of a concentric configuration of 3 uniform hoops, given the mass and radius of each? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: First, you find the individual moments of inertia by multiplying m by r^2. Then you add all of the moments of inertia together to get the total for the system. confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** Moment of inertia of a hoop is M R^2. We would get a total of M1 R1^2 + M2 R2^2 + M3 R3^2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `qHow do we find the moment of inertia a rigid beam of negligible mass to which are attached 3 masses, each of known mass and lying at a known distance from the axis of rotation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: You multiply the mass by the distance from the axis squared. Then you add up all of the masses to get the total.
.............................................
Given Solution: `a** Moment of inertia of a mass r at distance r is m r^2. We would get a total of m1 r1^2 + m2 r2^2 + m3 r3^2. Note the similarity to the expression for the hoops. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `qPrinciples of Physics and General College Physics problem 8.4. Angular acceleration of blender blades slowing to rest from 6500 rmp in 3.0 seconds. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Acceleration = 0rpm- 6500rpm / 3s = -2167 r/m/s (2 pi / 1revolution)(1min / 60s) = -227 rad/s^2 confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe change in angular velocity from 6500 rpm to rest is -6500 rpm. This change occurs in 3.0 sec, so the average rate of change of angular velocity with respect to clock time is ave rate = change in angular velocity / change in clock time = -6500 rpm / (3.0 sec) = -2200 rpm / sec. This reasoning should be very clear from the definition of average rate of change. Symbolically the angular velocity changes from omega_0 = 6500 rpm to omega_f = 0, so the change in velocity is `dOmega = omega_f - omega_0 = 0 - 6500 rpm = -6500 rpm. This change occurs in time interval `dt = 3.0 sec. The average rate of change of angular velocity with respect to clock time is therefore ave rate = change in angular vel / change in clock time = `dOmega / `dt = (omega_f - omega_0) / `dt = (0 - 6500 rpm) / (3 sec) = -2200 rpm / sec. The unit rpm / sec is a perfectly valid unit for rate of change of angular velocity, however it is not the standard unit. The standard unit for angular velocity is the radian / second, and to put the answer into standard units we must express the change in angular velocity in radians / second. Since 1 revolution corresponds to an angular displacement of 2 pi radians, and since 60 seconds = 1 minute, it follows that 1 rpm = 1 revolution / minute = 2 pi radians / 60 second = pi/30 rad / sec. Thus our conversion factor between rpm and rad/sec is (pi/30 rad / sec) / (rpm) and our 2200 rpm / sec becomes angular acceleration = 2200 rpm / sec * (pi/30 rad / sec) / rpm = (2200 pi / 30) rad / sec^2 = 73 pi rad / sec^2, or about 210 rad / sec^2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `qPrinciples of Physics and General College Physics problem 8.16. Automobile engine slows from 4500 rpm to 1200 rpm in 2.5 sec. Assuming constant angular acceleration, what is the angular acceleration and how how many revolutions does the engine make in this time? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Angular acceleration = 1200rpm – 4500rpm / 2.5 s = -1320 r/m/s (2 pi / 1 rev)(1min/60s) = -138 rad/s^2 vAve = 2850rpm Revolutions = 2850rpm * (2.5s/60s) = 119 rev 119 rev (2 pi / 1 rev) = 748 radians confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe change in angular velocity is -3300 rpm, which occurs in 2.5 sec. So the angular acceleration is angular accel = rate of change of angular vel with respect to clock time = -3300 rpm / (2.5 sec) = 1300 rpm / sec. Converting to radians / sec this is about angular accel = -1300 rpm / sec ( pi / 30 rad/sec) / rpm = 43 pi rad/sec^2, approx.. Since angular acceleration is assumed constant, a graph of angular velocity vs. clock time will be linear so that the average angular velocity with be the average of the initial and final angular velocities: ave angular velocity = (4500 rpm + 1200 rpm) / 2 = 2750 rpm, or 47.5 rev / sec. so that the angular displacement is angular displacement = ave angular velocity * time interval = 47.5 rev/s * 2.5 sec = 120 revolutions, approximately. In symbols, using the equations of uniformly accelerated motion, we could use the first equation `dTheta = (omega_0 + omega_f) / 2 * `dt = (75 rev / s + 20 rev / s) / 2 * (2.5 sec) = 120 revolutions, approx.. and the second equation omega_f = omega_0 + alpha * `dt, which is solved for alpha to get alpha = (omega_f - omega_0) / `dt = (75 rev/s - 20 rev/s ) / (2.5 sec) = 22 rev / sec^2, which as before can be converted to about 43 pi rad/sec^2, or about 130 rad/sec^2. The angular displacement of 120 revolutions can also be expressed in radians as 120 rev = 120 rev (2 pi rad / rev) = 240 pi rad, or about 750 radians. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `qgen Problem 8.23: A 55 N force is applied to the side furthest from the hinges, on a door 74 cm wide. The force is applied at an angle of 45 degrees from the face of the door. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Torque = perpendicular force * .74m Perpendicular force = 55 N (sin 45) = 38.9N Torque = 38.9N * .74m = 28.8 Nm confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** ** If the force is exerted perpendicular to the face of the door, then the torque on the door is 55 N * .74 m = 40.7 m N. The rest of the given solution here is for a force applied at an angle of 60 degrees. You can easily adapt it to the question in the current edition, where the angle is 45 degrees:The torque on the door is 45 N * .84 m = 37.8 m N. If the force is at 60 deg to the face of the door then since the moment arm is along the fact of the door, the force component perpendicular to the moment arm is Fperp = 37.8 m N * sin(60 deg) = 32.7 N and the torque is torque = Fperp * moment arm = 32.7 N * .84 m = 27.5 m N. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `qgen problem 8.11 rpm of centrifuge if a particle 7 cm from the axis of rotation experiences 100,000 g's YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: R = .07m Circumference: 2 pi .07 = .4398 m 100 000 * 9.8m/s^2 = v^2 / .07m V = 262 m/s 262m/s / .4398 m/rev = 596 rev/s 596 rev/s (60s / 1 min) = 35760 rpm confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** alpha = v^2 / r so v = `sqrt( alpha * r ) = `sqrt( 100,000 * 9.8 m/s^2 * .07 m) = `sqrt( 69,000 m^2 / s^2 ) = 260 m/s approx. Circumference of the circle is 2 `pi r = 2 `pi * .07 m = .43 m. 260 m/s / ( .43 m / rev) = 600 rev / sec. 600 rev / sec * ( 60 sec / min) = 36000 rev / min or 36000 rpm. All calculations are approximate. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: ` gen problem 8.20 small wheel rad 2 cm in contact with 25 cm wheel, no slipping, small wheel accel at 7.2 rad/s^2. qWhat is the angular acceleration of the larger wheel? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Acceleraration = (2/25) * 7.2 rad/s^2 = .576 rad/s^3 confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** Since both wheels travel the same distances at the rim, angular displacements (which are equal to distance along the rim divided by radii) will be in inverse proportion to the radii. It follows that angular velocities and angular accelerations will also be in inverse proportion to radii. The angular acceleration of the second wheel will therefore be 2/25 that of the first, or 2/25 * 7.2 rad/s^2 = .58 rad/s^2 approx.. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `qHow long does it take the larger wheel to reach 65 rpm? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A = .576m/s^2 65rpm (2pi rad/1rev)(60s/1min) = 6.81 rad/s Time = dv/ a Time = 6.81 rad/s / .576 rad/s^2 = 11.8 seconds confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** 65 rpm is 65 * 2 `pi rad / min = 65 * 2 `pi rad / (60 sec) = 6.8 rad / sec, approx. At about .6 rad/s/s we get `dt = (change in ang vel) / (ang accel) = 6.8 rad / s / ( .6 rad / s^2) = 11 sec or so. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `qUniv. 9.72 (64 in 10th edition). motor 3450 rpm, saw shaft 1/2 diam of motor shaft, blade diam .208 m, block shot off at speed of rim. How fast and what is centrip accel of pt on rim? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Angular velocity = 2*3450rpm (2pi/1rev)(60s/1min) = 723 rad/s Velocity at the rim = .104m * 723 rad/s = 75.2 m/s Centripetal acceleration = 75.2 m/s ^2 / .104m = 54375 m/s^2 confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The angular velocity of the shaft driving the blade is double that of the motor, or 3450 rpm * 2 = 7900 rpm. Angular velocity is 7900 rpm = 7900 * 2 pi rad / 60 sec = 230 pi rad / sec. The rim of the blade is half the .208 m diameter, or .104 m, from the axis. At a distance of .104 m from the axis of rotation the velocity will be .104 m * 230 pi rad / sec = 75 m/s, approx.. The centripetal acceleration at the .104 m distance is a_cent = v^2 / r = (75 m/s)^2 / (.104 m) = 54 000 m/s^2, approx.. The electrostatic force of attraction between sawdust and blade is nowhere near sufficient to provide this much acceleration. ** Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK "