#$&* course Mth 173 2/16 4pm 001. `query1
.............................................
Given Solution: ** Continue to the next question ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qAccording to your graph what would be the temperatures at clock times 7, 19 and 31? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The temperatures (Celsius) at clock times (minutes) 7, 19 and 31, according to my graph, are approximately 81, 63, and 49 respectively. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** Continue to the next question ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat three points did you use as a basis for your quadratic model (express as ordered pairs)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The three points used as a basis for a quadratic model expressed as ordered pairs are (0, 95), (40, 41) and (70, 26). confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** A good choice of points `spreads' the points out rather than using three adjacent points. For example choosing the t = 10, 20, 30 points would not be a good idea here since the resulting model will fit those points perfectly but by the time we get to t = 60 the fit will probably not be good. Using for example t = 10, 30 and 60 would spread the three points out more and the solution would be more likely to fit the data. The solution to this problem by a former student will be outlined in the remaining nswers'. STUDENT SOLUTION (this student probably used a version different from the one you used; this solution is given here for comparison of the steps, you should not expect that the numbers given here will be the same as the numbers you obtained when you solved the problem.) For my quadratic model, I used the three points (10, 75) (20, 60) (60, 30). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is the first equation you got when you substituted into the form of a quadratic? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The first equation obtained from the point (0, 95) is 0a +0b + c = 95. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The equation that I got from the first data point (10,75) was 100a + 10b +c = 75.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is the second equation you got when you substituted into the form of a quadratic? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The second equation obtained from the point (40, 41) is 1600a+ 40b + c = 41. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The equation that I got from my second data point was 400a + 20b + c = 60 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is the third equation you got when you substituted into the form of a quadratic? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The third equation obtained from the point (70, 26) is 4900a+ 70b + c = 26. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The equation that I got from my third data point was 3600a + 60b + c = 30. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat multiple of which equation did you first add to what multiple of which other equation to eliminate c, and what is the first equation you got when you eliminated c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To eliminate c, 0a + 0b + c = 95 was subtracted from 4900a + 70b + c = 26 resulting in 4900a + 70b = -69. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: First, I subtracted the second equation from the third equation in order to eliminate c. By doing this, I obtained my first new equation 3200a + 40b = -30. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qTo get the second equation what multiple of which equation did you add to what multiple of which other quation, and what is the resulting equation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To eliminate c, 0a + 0b + c = 95 was subtracted from 1600a + 40b + c = 41 resulting in 1600a + 40b = -54. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: This time, I subtracted the first equation from the third equation in order to again eliminate c. I obtained my second new equation: 3500a + 50b = -45** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhich variable did you eliminate from these two equations, and what was the value of the variable for which you solved these equations? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To eliminate the variable b and solve for variable a we have: 40(4900a + 70b) = 40(-69) =19600a + 280b = -276 and 70(1600a +40b) = 70(-54) = 11200a +280b = -378 then subtracting the latter from the first produces 8400a = 102 therefore variable a = 17/1400. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: In order to solve for a and b, I decided to eliminate b because of its smaller value. In order to do this, I multiplied the first new equation by -5 -5 ( 3200a + 40b = -30) and multiplied the second new equation by 4 4 ( 3500a + 50b = -45) making the values of -200 b and 200 b cancel one another out. The resulting equation is -2000 a = -310. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat equation did you get when you substituted this value into one of the 2-variable equations, and what did you get for the other variable? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Substituting this value into one of the 2-variable equations produces 1600(17/1400) + 40b = -54 and solving for b we have: 1600(17/1400) + 40b = -54 b = (-54 - 1600(17/1400))/40 b = -54/40 - (1600(17/1400))/40 b = -27/20 - (27200/1400)/40 b = -27/20 - 27200/56000 b = -27/20 - 17/35 b = -189/140 - 68/140 b = -257/140 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: After eliminating b, I solved a to equal .015 a = .015 I then substituted this value into the equation 3200 (.015) + 40b = -30 and solved to find that b = -1.95. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is the value of c obtained from substituting into one of the original equations? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The value of c obtained from substituting into one of the original equations is 1600(17/1400) + 40(-257/140) + c = 41 c = 41 - 1600(17/1400) - 40(-257/140) c = 41 - 27200/1400 + 10280/140 c = 41 - 272/14 + 1028/14 c = 41 + 756/14 c = 41 + 54 c = 95 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: By substituting both a and b into the original equations, I found that c = 93 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is the resulting quadratic model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The resulting quadratic model for the three chosen points is temperature = f(t) = 17/1400t^2 - 257/140t + 95. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Therefore, the quadratic model that I obtained was y = (.015) x^2 - (1.95)x + 93. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat did your quadratic model give you for the first, second and third clock times on your table, and what were your deviations for these clock times? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: According to the model, the following table is indicates the first, second and third clock times (minutes), corresponding temperature (Celsius) an deviation: Time Temp Prediction Deviation 0 95 95 0 10 75 78 3 20 60 63 3 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: This model y = (.015) x^2 - (1.95)x + 93 evaluated for clock times 0, 10 and 20 gave me these numbers: First prediction: 93 Deviation: 2 Then, since I used the next two ordered pairs to make the model, I got back }the exact numbers with no deviation. So. the next two were Fourth prediction: 48 Deviation: 1 Fifth prediction: 39 Deviation: 2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat was your average deviation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: My average deviation was approx. 1.34. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: My average deviation was .6 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I do not believe that their average deviation was .6 degrees from a quadratic model. Since the potato’s temperature would eventually reach ambient temperature and not get any colder thus it would have a limiting factor therefore, I think a logistic function would best model the relation, and higher degree polynomial models such as third or fourth give better fits as well.
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: There was no obvious pattern to my deviations. INSTRUCTOR NOTE: Common patterns include deviations that start positive, go negative in the middle then end up positive again at the end, and deviations that do the opposite, going from negative to positive to negative. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Yes, I do completely understand the process after studying these outlines and explanations. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qHave you memorized the steps of the modeling process, and are you gonna remember them forever? Convince me. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The modeling process steps are obtain and represent data, obtain a model, and validate and use the model. I will remember the primary steps forever. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Yes, sir, I have memorized the steps of the modeling process at this point. I also printed out an outline of the steps in order to refresh my memory often, so that I will remember them forever!!! INSTRUCTOR COMMENT: OK, I'm convinced. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qQuery Completion of Model first problem: Completion of model from your data.Give your data in the form of depth vs. clock time ordered pairs. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Table of data in the form of depth (centimeters) vs. clock time (seconds): clock t depth 5.3 63.7 10.6 54.8 15.9 46 21.2 37.7 26.5 32 31.8 26.6 Data in the form of depth vs. clock time ordered pairs: (5.3, 63.7), (10.6, 54.8), (15.9, 46), (21.2, 37.7), (26.5, 32), (31.8, 26.6) confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION: Here are my data which are from the simulated data provided on the website under randomized problems. (5.3, 63.7) (10.6. 54.8) (15.9, 46) (21.2, 37.7) (26.5, 32) (31.8, 26.6). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat three points on your graph did you use as a basis for your model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The three points on the graph used as a basis for the model were (5.3, 63.7), (15.9, 46), (31.8, 26.6). confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: As the basis for my graph, I used ( 5.3, 63.7) (15.9, 46) (26.5, 32)** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the first of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The first of the three equations was 28.09a + 5.3b + c = 63.7. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The point (5.3, 63.7) gives me the equation 28.09a + 5.3b + c = 63.7 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qGive the second of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The second of the three equations was 252.81a + 15.9b + c = 46. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The point (15.9, 46) gives me the equation 252.81a +15.9b + c = 46 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the third of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The third of the three equations was 1101.24a + 31.8b + c = 26.6. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The point (26.5,32) gives me the equation 702.25a + 26.5b + c = 32. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the first of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Subtracting 28.09a + 5.3b + c = 63.7 from 252.81a + 15.9b + c = 46 resulted in 224.72a + 10.6b = -17.7. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Subtracting the second equation from the third gave me 449.44a + 10.6b = -14. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the second of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Subtracting 252.81a + 15.9b + c = 46 from 1101.24a + 31.8b + c = 26.6 resulted in 758.43a + 15.9b = -19.4. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Subtracting the first equation from the third gave me 674.16a + 21.2b = -31.7. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qExplain how you solved for one of the variables. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To remove the b variable and solve for a variable I did the following: 15.9*(224.72a + 10.6b) = 15.9*-17.7 = 3573.048a + 168.54b = -281.43 and 10.6*(758.43a + 15.9b) = 10.6*-19.4 = 8039.358a + 168.54b = -205.64 then subtracting the first from the latter produced 4468.31a = 75.79 therefore variable a = 143/8427. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated b by multiplying the first equation by 21.2, which was the b value in the second equation. Then, I multiplied the seond equation by -10.6, which was the b value of the first equation, only I made it negative so they would cancel out. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat values did you get for a and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a = 143/8427 b = -3227/1590 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: a = .0165, b = -2 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat did you then get for c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: c = 73.98 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: c = 73.4 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is your function model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: depth = f(t) = 143/8427t^2 - 3227/1590t + 73.98 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: y = (.0165)x^2 + (-2)x + 73.4. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is your depth prediction for the given clock time (give clock time also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For t = 46 seconds, depth is about 16.5 centimeters since f(46) = 143/8427*46^2 - 3227/1590*46 + 73.98 = approx. 16.527. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The given clock time was 46 seconds, and my depth prediction was 16.314 cm.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat clock time corresponds to the given depth (give depth also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For depth = 14 centimeters the clock time t seconds is found using the quadratic formula as follows: 14 = 143/8427t^2 - 3227/1590t + 73.98 so 0 = 143/8427t^2 - 3227/1590t + 59.98 t = (- (- 3227/1590) +- `sqrt((- 3227/1590)^2 - 4*143/8427*59.98)) / (2*143/8427) so t is approx. 53.356 and approx. 66.246. We disregard the later solution because it is irrelevant for the model so the clock time that depth is 14 centimeters is at about 53.4 seconds. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** INSTRUCTOR COMMENT: The exercise should have specified a depth. The specifics will depend on your model and the requested depth. For your model y = (.0165)x^2 + (-2)x + 73.4, if we wanted to find the clock time associated with depth 68 we would note that depth is y, so we would let y be 68 and solve the resulting equation: 68 = .01t^2 - 1.6t + 126 using the quadratic formula. There are two solutions, x = 55.5 and x = 104.5, approximately. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qCompletion of Model second problem: grade average Give your data in the form of grade vs. clock time ordered pairs. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Data in the form of grade vs. clock time ordered pairs is: (0, 1) (10, 1.790569) (20, 2.118034) (30, 2.369306) (40, 2.581139) (50, 2.767767) (60, 2.936492) (70, 3.09165) (80, 3.236068) (90, 3.371708) (100, 3.5). confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION: Grade vs. percent of assignments reviewed (0, 1) (10, 1.790569) (20, 2.118034) (30, 2.369306) (40, 2.581139) (50, 2.767767) (60, 2.936492) (70, 3.09165) (80, 3.236068) (90, 3.371708) (100, 3.5). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat three points on your graph did you use as a basis for your model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The three points on the graph used as a basis for the model were (10, 1.790569), (60, 2.936492), (100, 3.5). confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: (20, 2.118034) (50, 2.767767) (100, 3.5)** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the first of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The first of the three equations was 100a + 10b + c = 1.790569. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 400a + 20b + c = 2.118034** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the second of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The second of the three equations was 3600a + 60b + c = 2.936492. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 2500a + 50b + c = 2.767767 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the third of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The third of the three equations was 10000a + 100b + c = 3.5. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 10,000a + 100b + c = 3.5 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the first of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3500a + 50b = 1.145923 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 7500a + 50b = .732233. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the second of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 6400a + 40b = .563508 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Subracting the first equation from the third I go 9600a + 80b = 1.381966 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qExplain how you solved for one of the variables. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To remove the b variable and solve for a variable I did the following: 40*(3500a + 50b) = 40*1.145923 = 140000a + 2000b = 45.83692 and 50*(6400a + 50b) = 50*.563508 = 320000a + 2000b = 28.1754 then subtracting the first from the latter produced 180000a = -17.66152 therefore variable a = -17.66152 /180000. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated the variable b. In order to do this, I multiplied the first new equation by 80 and the second new equation by -50. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat values did you get for a and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a = -17.66152 /180000 b = .029786828889 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: a = -.0000876638 b = .01727 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat did you then get for c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: c = 1.50251266667 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: c = 1.773. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is your function model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = -17.66152 /180000 x^2 + .029786828889 x + 1.50251266667 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** y = -.0000876638 x^2 + (.01727)x + 1.773 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is your percent-of-review prediction for the given range of grades (give grade range also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The given range of grades 3.0 and 4.0 is obtained once a review percentage of approximately 64 is reached however grade 4.0 unobtainable because it is out of range since if 100 percent is achieved results in a 3.5 grade. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The precise solution depends on the model desired average. For example if the model is y = -.00028 x^2 + .06 x + .5 (your model will probably be different from this) and the grade average desired is 3.3 we would find the percent of review x corresponding to grade average y = 3.3 then we have 3.3 = -.00028 x^2 + .06 x + .5. This equation is easily solved using the quadratic formula, remembering to put the equation into the required form a x^2 + b x + c = 0. We get two solutions, x = 69 and x = 146. Our solutions are therefore 69% grade review, which is realistically within the 0 - 100% range, and 146%, which we might reject as being outside the range of possibility. To get a range you would solve two equations, on each for the percent of review for the lower and higher ends of the range. In many models the attempt to solve for a 4.0 average results in an expression which includes the square root of a negative number; this indicates that there is no real solution and that a 4.0 is not possible. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat grade average corresponds to the given percent of review (give grade average also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: At given percent of review of 80%, the grade average according to the model is f(80) = -- 17.66152/180000 * 80^2 + .029786828889 * 80 + 1.50251266667 = 3.25749382223. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** Here you plug in your percent of review for the variable. For example if your model is y = -.00028 x^2 + .06 x + .5 and the percent of review is 75, you plug in 75 for x and evaluate the result. The result gives you the grade average corresponding to the percent of review according to the model. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qHow well does your model fit the data (support your answer)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The approximate .0674391 grade average deviation from original data when using model is how well the fit. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** You should have evaluated your function at each given percent of review-i.e., at 0, 10, 20, 30, . 100 to get the predicted grade average for each. Comparing your results with the given grade averages shows whether your model fits the data. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qillumination vs. distance Give your data in the form of illumination vs. distance ordered pairs. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The data in the form of illumination vs. distance ordered pairs is (1, 935.1395), (2, 264.4411), (3, 105.1209), (4, 61.01488), (5, 43.06238), (6, 25.91537), (7, 19.92772), (8, 16.27232), (9, 11.28082), (10, 9.484465). confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION: (1, 935.1395) (2, 264..4411) (3, 105.1209) (4, 61.01488) (5, 43.06238) (6, 25.91537) (7, 19.92772) (8, 16.27232) (9, 11.28082) (10, 9.484465)** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat three points on your graph did you use as a basis for your model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The three points on the graph used as a basis for the model were (1, 935.1395), (5, 43.06238) and (10, 9.484465). confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: (2, 264.4411) (4, 61.01488) (8, 16.27232) ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the first of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The first of three equations is a + b + c = 935.1395 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 4a + 2b + c = 264.4411** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the second of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The second of three equations is 25a + 5b + c = 43.06238. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 16a + 4b + c = 61.01488** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the third of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The third of three equations is 100a + 10b + c = 9.484465. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 64a + 8b + c = 16.27232** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the first of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The first of the equations got when c was eliminated is 24a +4b = -892.07712. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 48a + 4b = -44.74256** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qGive the second of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The second of the equations got when c was eliminated is 75a +5b = -33.577915. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 60a + 6b = -248.16878** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qExplain how you solved for one of the variables. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To eliminate the variable b and solve for variable a we have: 5(24a + 4b) = 5(-892.07712) = 120a + 20b = -4460.3856 and 4(75a +5b) = 4(-33.577915) = 300a + 20b = -134.31166 then subtracting the first from the latter produces 180a = 4326.07394 therefore variable a = 4326.07394/180. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: I solved for a by eliminating the variable b. I multiplied the first new equation by 4 and the second new equation by -6 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat values did you get for a and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a = 4326.07394/180 b = -2306887/6282 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: a = 15.088, b = -192.24 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat did you then get for c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: c = 111323425/8858 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: c = 588.5691** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is your function model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Illumination of Comet (W/m^2) = f(x) = 4326.07394/180x^2 - 2306887/6282x + 11323425/8858. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: y = (15.088) x^2 - (192.24)x + 588.5691 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat is your illumination prediction for the given distance (give distance also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: At a distance of 1.6 (AU), the illumination of the comet is 752.2991 (W/m^2) because 4326.07394/180*1.6^2 - 2306887/6282*1.6 + 11323425/8858 = 752.299094021. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The given distance was 1.6 Earth distances from the sun. My illumination prediction was 319.61 w/m^2, obtained by evaluating my function model for x = 1.6. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `qWhat distances correspond to the given illumination range (give illumination range also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The distances corresponding to the given illumination range of 25 to 100 watts can be found substituting these values for f(x) and using the Quadratic Formula of x = (-b +- `sqrt(b^2 - 4ac))/(2a) where a = 4326.07394/180, b = - 2306887/6282 and c = 11323425/8858 - f(x). Discounting unrealistic results we find that the distances corresponding to the given illumination range of 25 to 100 watts are between about 5.146414 AU and 4.584037 AU respectively according to this model, which is not a very good fit for the given data. A power function would be best for modeling the data.
.............................................
Given Solution: ** The precise solution depends on the model and the range of averages. For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations 25=9.4 r^2 - 139 r + 500 and 100 =9.4 r^2 - 139 r + 500 Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data. The solutions which correspond to the data are r = 3.9 when y = 100 and r = 5.4 when y = 25. So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100. Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. ** " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `qWhat distances correspond to the given illumination range (give illumination range also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The distances corresponding to the given illumination range of 25 to 100 watts can be found substituting these values for f(x) and using the Quadratic Formula of x = (-b +- `sqrt(b^2 - 4ac))/(2a) where a = 4326.07394/180, b = - 2306887/6282 and c = 11323425/8858 - f(x). Discounting unrealistic results we find that the distances corresponding to the given illumination range of 25 to 100 watts are between about 5.146414 AU and 4.584037 AU respectively according to this model, which is not a very good fit for the given data. A power function would be best for modeling the data.
.............................................
Given Solution: ** The precise solution depends on the model and the range of averages. For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations 25=9.4 r^2 - 139 r + 500 and 100 =9.4 r^2 - 139 r + 500 Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data. The solutions which correspond to the data are r = 3.9 when y = 100 and r = 5.4 when y = 25. So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100. Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. ** " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!