QA15

#$&*

course MTH 173

8/7/11midnight

015. The differential and the tangent line

*********************************************

Question: `q001. Using the differential and the value of the function at x = 3, estimate the

value of f(x) = x^5 and x = 3.1. Compare with the actual value.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&

*********************

dy/dx = 5x^4

dy/.1 = 5(3)^4

dy =~ 40.5

f(3) = 243, so 243+40.5 = 283.5

and f(3.1) =~ 286.3

&&&&&&&&&&&&&&&&&&&&&

*********************

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe differential of a function y = f(x) is `dy = f ' (x) * `dx. Since for f(x) = x ^ 5 we have

f ' (x) = 5 x^4, the differential is `dy = 5 x^4 `dx.

At x = 3 the differential is `dy = 5 * 3^4 * `dx, or

`dy = 405 `dx.

Between x = 3 and x = 3.1 we have `dx = .1 so `dy = 405 * .1 = 40.5.

Since at x = 3 we have y = f(3) = 3^5 = 243, at x = 3.1 we should have y = 243 + 40.5 = 283.5,

approx..

Note that the actual value of 3.1 ^ 5 is a bit greater than 286; the inaccuracy in the

differential is due to the changing value of the derivative between x = 3 and x = 3.1. Our

approximation was based on the rate of change, i.e. the value of the derivative, at x = 3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `q002. Using the differential and the value of the function at x = e, estimate the

value of ln(2.8). Compare with the actual value.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&

*********************

y = ln(x)

dy/dx = 1/x

dy/.0817 = 1/e

dy = .03006

y(e) = 1

1 + .03006 = 1.03006

actual:

ln(2.8) = 1.02962

&&&&&&&&&&&&&&&&&&&&&

*********************

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe differential of the function y = f(x) = ln(x) is `dy = f ' (x) `dx or

`dy = 1/x `dx.

If x = e we have

`dy = 1/e * `dx.

Between e and 2.8, `dx = 2.8 - e = 2.8 - 2.718 = .082, approx.. Thus `dy = 1/e * .082 = .030,

approx..

Since ln(e) = 1, we see that ln(2.8) = 1 + .030 = 1.030, approx..

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `q003. Using the differential verify that the square root of a number close to 1 is

twice as close to 1 as the number. Hint: Find the differential approximation for the function

f(x) = `sqrt(x) at an appropriate point.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&

*********************

dy/dx = .5(x)^-.5

at x = 1,

dy = .5(1)^-.5*dx

dy = .5*dx

&&&&&&&&&&&&&&&&&&&&&

*********************

confidence rating #$&*: OK

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe differential for this function is easily seen to be `dy = 1 / (2 `sqrt(x) ) * `dx. At x =

1 the differential is therefore

`dy = 1 / 2 * `dx.

This shows that as we move away from x = 1, the change in y is half the change in x. Since y =

f(x) = 1 when x = 1, as x 'moves away' from 1 we see that y also 'moves away' from 1, but only

half as much.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `q004. Using the differential approximation verify that the square of a number close

to 1 is twice as far from 1 as the number.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&

*********************

y = x^2

dy/dx = 2x

dy = 2(1)*dx

dy = 2*dx

&&&&&&&&&&&&&&&&&&&&&

*********************

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe differential for this function is easily seen to be `dy = 2 x * `dx. At x = 1 the

differential is therefore

`dy = 2 * `dx.

This shows that as we move away from x = 1, the change in y is double the change in x. Since y =

f(x) = 1 when x = 1, as x 'moves away' from 1 we see that y also 'moves away' from 1, but by

twice as much.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `q005. The lifting strength of an athlete in training changes according to the

function L(t) = 400 - 250 e^(-.02 t), where t is the time in weeks since training began. What is

the differential of this function? At t = 50, what approximate change in strength would be

predicted by the differential for the next two weeks?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&

*********************

dL/dt = -.02(-250)e^(-.02t)

dL/dt = -.02(-250)e^(-.02*50) = 1.84 lbs/week

dL/2lbs = 1.84lbs/week

dL = 3.68lbs

&&&&&&&&&&&&&&&&&&&&&

*********************

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe differential is

`dL = L ' (t) * `dt =

-.02 ( -250 e^(-.02 t) ) `dt, so

`dL = 5 e^(-.02 t) `dt.

At t = 50 we thus have

`dL = 5 e^(-.02 * 50) `dt, or

`dL = 1.84 `dt.

The change over the next `dt = 2 weeks would therefore be approximately

`dL = 1.84 * 2 = 3.68.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q006. As you move away from a fairly typical source of light, the illumination you

experience from that light is given by I(r) = k / r^2, where k is a constant number and r is your

distance in meters from the light. Using the differential estimate the change in illumination as

you move from r = 10 meters to r = 10.3 meters.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&

*********************

dI/dr = -2k/r^3

dI/.3m = -2k/(10^3)

dI = -.6k/(1000)

&&&&&&&&&&&&&&&&&&&&&

*********************

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe differential is

`dI = I ' (r) * `dr,

where I ' is the derivative of I with respect to r.

Since I ' (r) = - 2 k / r^3, we therefore have

`dI = -2 k / r^3 * `dr.

For the present example we have r = 10 m and `dr = .3 m, so

`dI = -2 k / (10^3) * .3 = -.0006 k.

This is the approximate change in illumination.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `q007. A certain crystal grows between two glass plates by adding layers at its

edges. The crystal maintains a rectangular shape with its length double its width. Its width

changes by .1 cm every hour. At a certain instant its width is 5 cm. Use a differential

approximation to determine its approximate area 1 hour later.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&

*********************

y = 2x(x) = 2x^2

dy/dx = 4x

dy/.1 = 4(5)

dy = 2cm^2

y(5) = 2(5cm)^2 = 50cm^2, so

50cm^2 + 2cm^2 = 52cm^2

&&&&&&&&&&&&&&&&&&&&&

*********************

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aIf the width of the crystal is x then its length is 2x and its area is 2x * x = 2x^2. So we

wish to approximate f(x) = 2x^2 near x = 5.

f ' (x) = 4 x, so when x = 5 we have y = 2 * 5^2 = 50 and y ' = 4 * 5 = 20.

The rate at which area changes with respect to width is therefore close to y ' = 20 units of area

per unit of width. A change of .1 cm in width therefore implies a change of approximately 20 *

.1 = 2 in area. Thus the approximate area should be 50 + 2 = 52. This can easily be compared

with the accurate value of the area which is 52.02.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `q008. The radius of a sphere is increasing at the rate of .3 cm per day. Use the

differential to determine the approximate rate at which its volume is increasing on a day when

the radius is in the neighborhood of 20 cm.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&

*********************

V(x) = (4/3)pi(r^3)

dV/dx = 4pi(r^2)

dV/.3cm = 4pi(20cm)^2

dV = 1508cm^3

so

V(20) = 33510.3cm^3

and 33510.3cm^3 + 1508cm^3 = 35,018.3cm^3

&&&&&&&&&&&&&&&&&&&&&

*********************

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe volume of a sphere is V(r) = 4/3 * `pi * r^3. The rate at which the volume changes with

respect to the radius is dV / dr = 4 * `pi * r^2.

Thus when r = 20 the volume is changing at a rate of 4 * `pi * 20^2 = 1600 `pi cm^3 volume per cm

of radius. It follows that if the radius is changing by .3 cm / day, the volume must be changing

at 1600 `pi cm^3 / (cm of radius) * .3 cm of radius / day = 480 `pi cm^3 / day.

Note that this is the instantaneous rate at the instant r = 20. This rate will increase as r

increases.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Very good work. Let me know if you have questions. &#