query20

#$&*

course MTH 173

8/7/11

020. `query 20

*********************************************

Question: `qQuery problem 3.6.12 (3d edition 3.6.44). was 4.6.12 derivative of e^( ln(x) + 1)

What is the derivative of the given function?

Explain what rule or rules you used to obtain your derivative and how you used them.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&&&

***********************

y' = (1/x)(e^(ln(x) + 1) = (1/x)(e^(ln(x))*e^1 = 1(e) = e

you take the derivative of the exponent and multiply by e to the original exponent, ex: (e^x)' =

x'e^x

I believe that's the Chain Rule.

&&&&&&&&&&&&&&&&&&&&&&&

***********************

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** This is a composite with f(z) = e^z and g(x) = ln(x) + 1.

g'(x) = 1/x, f'(z) = e^z.

So the derivative is

(e^(ln(x)+1)) ' = (f(g(x)) ' =

g'(x) * f'(g(x)) =

1/x e^(ln(x)+1)) =

1/x e^(ln(x)) * e^1 = 1/x * x * e = e. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhy is in easier to calculate the derivative of this function if you simplify the

function first?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&&&

***********************

because you'll get x(e), the derivative of which is just e.

&&&&&&&&&&&&&&&&&&&&&&&

***********************

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** e^(ln x + 1) = e^(ln x) * e^1 = x * e or just e * x.

e is a constant so the derivative of e * x is e * 1 = e. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qQuery problem 3.6.43 (3d edition 3.6.44) was 4.6.30 y = ln(x) at x = 1

What is the equation of the tangent line at the given point?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&&&

***********************

y' = 1/x

y'(1) = 1/1 = 1

y(1) = ln(1) = 0, so

0 = 1(1) + b

-1 = b

y = x-1

&&&&&&&&&&&&&&&&&&&&&&&

***********************

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** tan line at x = 1 passes through the corresponding graph point (1, ln(1) ) = (1, 0).

Slope of tan line equals derivative: y' = 1/x; at x = 1 we have y' = 1.

So line has slope 1 and passes through (1, 0).

The equation of the line is y - 0 = 1 * (x - 1), or y = x-1. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat are your approximations to ln(1.1) and ln(2), based on the tangent line?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&&&

***********************

based on the tangent line,

y(1.1) = 1.1-1 = .1

y(2) = 2-1 = 1

&&&&&&&&&&&&&&&&&&&&&&&

***********************

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** to get approx ln(1.1): y = 1.1 - 1 = .1.

to get approx ln(2): y = 2 - 1 = 1.

Actual values are

ln(1.1)=0.095 and

ln(2)=0.69.

Note that the first is a little below the approximation given by the tangent line, the second

much below the tangent-line value. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: In terms of the graph, explain whether your approximations are larger or smaller than

the true values.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&&&

***********************

y=ln(x) is concave down and increasing, and so the difference between the graph and the tangent

will get increasingly greater in magnitude as the graphs continue.

&&&&&&&&&&&&&&&&&&&&&&&

***********************

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Since the graph of y = ln(x) is increasing and concave downward, it will always curve

progressively away from any tangent-line approximation.

In this case the approximating point is x = 1. The further x is from the approximating point,

the further the tangent line will be from the actual graph.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qQuery problem 3.7.16 (was 3.7.9 was 4.7.6) e^(x^2) + ln y = 0

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&&&

***********************

2x(e^(x^2)) + 1/y(y') = 0

1/y(y') = -2x(e^(x^2))

y' = -2xy(e^(x^2))

&&&&&&&&&&&&&&&&&&&&&&&

***********************

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aWhen differentiating with respect to x any x terms are differentiated as usual, to

differentiate y with respect to x assumes that y is a function of x, in which case its derivative

with respect to x is the unspecified quantity dy/dx.

The derivative of a function of y is therefore the derivative of a composite. For example cos(y)

is the composite of f(y) = cos(y) with the function g(x) = y(x), whose form is not specified. Do

g ' (x) * f ' (g(x) ) is y ' (x) f ' (y ( x) ); in the present example this would be y ' (x) * (

-sin(y(x)), which we would write -sin(y) y ' with the understanding that y stands for y(x) and y

' for y ' (x).

When we use implicit differentiation to solve for y ' we will typically get some terms containing

y ' as a factor and others which don't. We separate these terms algebraically, with the y ' terms

on one side and everything else on the other. We then factor out y ' and divide both sides by the

other factor to obtain an expression for y ' in terms of y and x.

SPECIFIC SOLUTION:

The derivative of the equation with respect to x is 2x e^(x^2) + 1/y * y ' = 0. Solving this for

y ' we get

1/y * y ' = 2 x e^(x^2) so that

y ' = - 2x e^(x^2) * y.

To see why the derivative of ln y is y ' * 1/y:

y is itself a function of x, so ln(y) means ln(y(x)).

y(x) is the inner function and its derivative is y'(x) = dy/dx.

f(z) = ln(z) is the outer function and its derivative is 1/z.

Thus the derivative of f(y(x)) is y'(x) f ' (y(x)) = dy/dx * 1 / y(x), written just dy/dx *

1/y or y' * 1/y.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qQuery problem 3.7.34 (3d edition 3.7.26) was 4.7.18 circle x^2+y^2=25

What are the equations of the tangent lines to the circle at the points where x = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

&&&&&&&&&&&&&&&&&&&&&&&

***********************

2x + 2yy' = 0

2yy' = -2x

y' = -x/y

(4)^2 + y^2 = 25

y^2 = 9

y = +-3

so

y'(4,3) = -4/3

y'(4, -3) = 4/3

so

3 = 4(-4/3) + b

b = 25/3,so

y = -4/3x + 25/3

or

-3 = 4(4/3) + b

b = -25/3

so

y = 4/3x -25/3

normal lines:

y = 3/4x

y = -3/4x

&&&&&&&&&&&&&&&&&&&&&&&

***********************

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** Solving x^2+y^2=25 for x = 4 you get y^2 = 9, which has solutions y = +3 and y = -3.

So the points are (4, 3) and (4, -3).

By the geometry of the circle the tangent line at a point on the circle is perpendicular to the

radial line to that point. The radial lines go from (0,0) to (4,-3) and to (4,3) and so have

slopes -3/4 and 3/4, respectively. The tangent lines, being perpendicular, will have the negative

reciprocal slopes of 4/3 and -4/3, respectively.

Alternatively implicit differentiation of the equation gives us 2 x + 2 y dy/dx = 0, so that

dy/dx = -x/y. At (4,3) and (4,-3) we get dy/dx = -4/3 and +4/3, respectively, confirming the

previous results.

Thus, either way, slope at (4,3) is -4/3, slope at (4,-3) is +4/3.

Equation of tangent line at (4,3) is y - 3 = -4/3 ( x - 4) so y = -4/3 x + 25/3.

Equation of tangent line at (4,-3) is y - -3 = 4/3 ( x - 4) so y = 4/3 x - 25/3.

When x = 4 we have 4^2 + y^2 = 25 so y^2 = 25 - 16 = 9 and y = 3 or -3.

Thus the points where x = 4 are (4,3) and (4,-3).

The slope from the center (0,0) to (4,3) is 4/3; the tangent line is perpendicular to the radial

line from the center to (4,3), so has slope -4/3. The equation of the tangent line is therefore y

- 3 = -4/3 (x-4), or y = -4/3 x + 25/3.

The slope from the center (0,0) to (4,-3) is -4/3; the tangent line is perpendicular to the

radial line from the center to (4,-3), so has slope 4/3. The equation of the tangent line is

therefore y - (-3) = 4/3 (x-4) or y = 4/3 x - 25/3.

The normal lines are perpendicular to the tangent lines. They therefore have slopes which are the

negative reciprocals of the slopes of the tangent lines.

Thus the normal lines pass through (4,3) with slope 3/4 and through (-4/3) with slope -3/4.

You might note that lines through the origin and with the specified slopes pass through the

corresponding points, so those lines are y = 3/4 x and y = -3/4 x, respectively.

If you don't notice this you will go ahead and use the point-slope form of the equations. You get

y - 3 = 3/4 ( x - 4), which on solving for y gives you y = 3/4 x, and

y - 3 = -3/4 ( x - (-4)), which on solving for y gives you y = -3/4 x. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Very good work. Let me know if you have questions. &#