query1

#$&*

course mth 173

001. `query1

*********************************************

Question: `qFor the temperature vs. clock time model, what were

temperature and time for the first, third and fifth data points

(express as temp vs clock time ordered pairs)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(0, 95)

(20, 60)

(40, 41)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Continue to the next question **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qAccording to your graph what would be the temperatures at

clock times 7, 19 and 31?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(.013)7^2 + 7(-1.83) + 92 = y

.637 - 12.81 + 92 = 78.553

(.013)19^2 + 19(-1.83) + 92 = y

4.693 - 34.77 + 92 = 61.923

(.013)31^2 + 31(-1.83) + 92 = y

12.493 - 56.73 + 92 = 47.763

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Continue to the next question **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat three points did you use as a basis for your

quadratic model (express as ordered pairs)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(10, 75)

(30, 49)

(60, 30)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** A good choice of points `spreads' the points out rather than using

three adjacent points. For example choosing the t = 10, 20, 30 points

would not be a good idea here since the resulting model will fit those

points perfectly but by the time we get to t = 60 the fit will probably

not be good. Using for example t = 10, 30 and 60 would spread the

three points out more and the solution would be more likely to fit the

data. The solution to this problem by a former student will be

outlined in the remaining nswers'.

STUDENT SOLUTION (this student probably used a version different from

the one you used; this solution is given here for comparison of the

steps, you should not expect that the numbers given here will be the

same as the numbers you obtained when you solved the problem.)

For my quadratic model, I used the three points

(10, 75)

(20, 60)

(60, 30). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat is the first equation you got when you substituted

into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I used (10, 75) as my first point in the equations and got...

100a + 10b + c = 75

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from the first

data point (10,75) was 100a + 10b +c = 75.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat is the second equation you got when you substituted

into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The second data point I used was (30, 49) which gave me the equation

900a + 30b + c = 49

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from my second

data point was 400a + 20b + c = 60 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat is the third equation you got when you substituted

into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I used the data point (60, 30) as my third point and got the

equation...

3600a + 60b + c = 30

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from my third

data point was 3600a + 60b + c = 30. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat multiple of which equation did you first add to what

multiple of which other equation to eliminate c, and what is the first

equation you got when you eliminated c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Since c has a coefficient of one in all of the equations, I just

subtracted equation 2 from equation 3 to get...

2700a + 30b = -19

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: First, I subtracted the second equation

from the third equation in order to eliminate c.

By doing this, I obtained my first new equation

3200a + 40b = -30. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qTo get the second equation what multiple of which equation

did you add to what multiple of which other quation, and what is the

resulting equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

For the second equation I felt the obvious answer was to subtract the

first equation from the third this time, which gave me...

3500a + 50b = -45

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: This time, I subtracted the first

equation from the third equation in order to again eliminate c.

I obtained my second new equation:

3500a + 50b = -45**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhich variable did you eliminate from these two equations,

and what was the value of the variable for which you solved these

equations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I decided to eliminated b, since it has the smaller coefficients, which

would make the math easier.

I did this by using the following equations...

-3(3500a + 50b = -45) = -10500a - 150a = 135

5(2700a + 30b = -19) = 13500 + 50b = -95

I then combined the equations, with the b's cancelling each other out.

3000a = 40 was the resulting equation.

Leaving a to equal 40/3000 or 0.013333 repeating.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a and b, I

decided to eliminate b because of its smaller value. In order to do

this, I multiplied the first new equation by -5

-5 ( 3200a + 40b = -30)

and multiplied the second new equation by 4

4 ( 3500a + 50b = -45)

making the values of -200 b and 200 b cancel one another out. The

resulting equation is -2000 a = -310. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: `qWhat equation did you get when you substituted this value

into one of the 2-variable equations, and what did you get for the

other variable?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I used 3500(40/3000) + 50b = -45

46.666667 + 50b = -45 Subtract 46.666667 from both sides

50b = -91.666667

b = -1.83333

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: After eliminating b, I solved a to

equal .015

a = .015

I then substituted this value into the equation

3200 (.015) + 40b = -30

and solved to find that b = -1.95. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

My numbers are a little different from the given solution, due to the

given soultion rounding its answers, where I tried to keep mine as

exact as possible using decimals.

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat is the value of c obtained from substituting into one

of the original equations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

100(40/3000) + 10(-1.83) + c = 75

-17 + c = 75

c = ~92

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: By substituting both a and b into the

original equations, I found that c = 93 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Since seeing the given answer was rounding, I rounded a little in my

answer here so that the m,ath would be a little easier. The different

rounding techniques used caused my answer to be off by one. I am okay

with this, as I made it through all of the steps correctly.

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `qWhat is the resulting quadratic model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = (.013)x^2 + (-1.83)x + 92

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Therefore, the quadratic model that I

obtained was

y = (.015) x^2 - (1.95)x + 93. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat did your quadratic model give you for the first,

second and third clock times on your table, and what were your

deviations for these clock times?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(.013)0 + (-1.83)0 + 92 = 92

My first point would have been 92, when the actual first point was 95.

My deviation for this clock time is 3.

My second point

(.013)10^2 + 10(-1.83) + 92 = y

1.3 + -18.3 + 92 = 75

My second clock time ends up giving me a temperature of 75, which

actually matches the temperature on the actual table, so a deviation of

0.

The third point is at t = 20.

(.013)20^2 + 20(-1.83) + 92 = y.

5.2 - 36.6 + 92 = 60.6

My third clock time give me a temperature of 60.6, whie the actual

temperature was 60. This results in a deviation of .6

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: This model y = (.015) x^2 - (1.95)x +

93 evaluated for clock times 0, 10 and 20 gave me these numbers:

First prediction: 93

Deviation: 2

Then, since I used the next two ordered pairs to make the model, I got

back

}the exact numbers with no deviation. So. the next two were

Fourth prediction: 48

Deviation: 1

Fifth prediction: 39

Deviation: 2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat was your average deviation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

My 3 deviations were 3, 0, and 0.6.

My average deviation was 1.2.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: My average deviation was .6 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qIs there a pattern to your deviations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

My deviations started out lower than the original temperature, but

gradually worked their way to being warmer than the original

temperatures.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: There was no obvious pattern to my

deviations.

INSTRUCTOR NOTE: Common patterns include deviations that start

positive, go negative in the middle then end up positive again at the

end, and deviations that do the opposite, going from negative to

positive to negative. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qHave you studied the steps in the modeling process as

presented in Overview, the Flow Model, Summaries of the Modeling

Process, and do you completely understand the process?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I have studied the steps, and as of this point in time feel that I

understand the process. Although, I am sure when testing time comes, I

will have a million questions run through my head.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Yes, I do completely understand the

process after studying these outlines and explanations. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qHave you memorized the steps of the modeling process, and

are you gonna remember them forever? Convince me.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I have not completely memorized the process as of yet, but I will

continue working to memorize them over the next few days.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Yes, sir, I have memorized the steps of

the modeling process at this point. I also printed out an outline of

the steps in order to refresh my memory often, so that I will remember

them forever!!!

INSTRUCTOR COMMENT: OK, I'm convinced. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Although I haven't completemely memorized every step in the modeling

process I will be printing off a copy to go over during my free time

until I am able to memorize the entire process.

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `qQuery Completion of Model first problem: Completion of

model from your data.Give your data in the form of depth vs. clock time

ordered pairs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(4.2, 80.2)

(8.4, 72.9)

(12.6, 67.5)

(16.8, 63.3)

(21, 59.3)

(25.2, 55)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION: Here are my data which are from the simulated

data provided on the website under randomized problems.

(5.3, 63.7)

(10.6. 54.8)

(15.9, 46)

(21.2, 37.7)

(26.5, 32)

(31.8, 26.6). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat three points on your graph did you use as a basis for

your model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(4.2, 80.2)

(12.6, 67.5)

(25.2, 55)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: As the basis for my graph, I used

( 5.3, 63.7)

(15.9, 46)

(26.5, 32)**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qGive the first of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a(4.2^2) + 4.2b + c = 80.2

17.64a + 4.2b + c = 80.2

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The point (5.3, 63.7) gives me the

equation 28.09a + 5.3b + c = 63.7 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qGive the second of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a(12.6^2) + 12.6b + c = 67.5

158.76a + 12.6b + c = 67.5

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The point (15.9, 46) gives me the

equation 252.81a +15.9b + c = 46 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qGive the third of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a(25.2^2) + 25.2b + c = 55

635.04a + 25.2b + c = 55

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The point (26.5,32) gives me the

equation 702.25a + 26.5b + c = 32. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qGive the first of the equations you got when you

eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I subtracted the first equation from the third equation, and got

617.4a - 21b = -25.2

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Subtracting the second equation from

the third gave me 449.44a + 10.6b = -14. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qGive the second of the equations you got when you

eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I subtracted the second equation from the third to get...

476.28a + 12.6b = -12.5

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Subtracting the first equation from the

third gave me 674.16a + 21.2b = -31.7. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qExplain how you solved for one of the variables.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I eliminated b from the equations by multiplying the two equations by 3

and -5 as follows.

3(617.4a + 21b = -25.2) = 1852.2a + 63b = -75.6

-5(476.28a + 12.6b = -12.5) = -2381.4 - 63b = 62.5

Which gave me the following equations when I merged the two together.

-529.2a = -13.1

a = ~~.025

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated b

by multiplying the first equation by 21.2, which was the b value in the

second equation. Then, I multiplied the seond equation by -10.6, which

was the b value of the first equation, only I made it negative so they

would cancel out. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat values did you get for a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Per the previous question, a = 0.025, roughly.

b can be found by substituting a in one of the two variable euqations.

476.28(.025) + 12.6b = -12.5

11.907 + 12.6b = -12.5

12.6b = -.593

b = ~~ -0.05

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: a = .0165, b = -2 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat did you then get for c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

17.64(.025) + 4.2(-.05) + c = 80.2

.441 - .21 + c = 80.2

c = 79.969

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: c = 73.4 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat is your function model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = (.025)x^2 + (-.05)x + 79.969

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: y = (.0165)x^2 + (-2)x + 73.4. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is your depth prediction for the given clock time

(give clock time also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I don't see a given time, so I am just going to use 20 seconds as a

time.

(.025)20^2 + (-.05)20 + 79.969 = y

10 - 1 + 79.969 = 88.969cm

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The given clock time was 46 seconds,

and my depth prediction was 16.314 cm.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat clock time corresponds to the given depth (give depth

also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Again, I don't see a given depth, so I will use 50cm as an example.

50 = (.025)x^2 + (-.05)x + 79.969

Then we would solve for x by factoring out the equation.

0 = (.025)x^2 + (-.05)x + 29.969

??????I am not sure how to go any further on this problem. I even tried

to use an online quadratic equation solver, and am not sure of the

ansewr, as it is said to have complex roots.???????

confidence rating #$&*:0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** INSTRUCTOR COMMENT: The exercise should have specified a depth.

The specifics will depend on your model and the requested depth. For

your model y = (.0165)x^2 + (-2)x + 73.4, if we wanted to find the

clock time associated with depth 68 we would note that depth is y, so

we would let y be 68 and solve the resulting equation:

68 = .01t^2 - 1.6t + 126

using the quadratic formula. There are two solutions, x = 55.5 and x =

104.5, approximately. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

????The given solutions didn't show how to finish solving the

equation.???? I know the quadratic formula is used, but using a

quadratic calculator, I get ""1 + 34.####"" and ""1 - 34.######"". That

seems plausible, but I don't understand why it is ""1 +...""

------------------------------------------------

Self-critique Rating:3

@&

You would be expected to use the quadratic formula. An online equation solver is OK if you want to check your results, or if you have a large number of equations to solve. However in this course you would apply the quadratic formula and show the steps of your simplification.

For the depth you chose the discriminant would be

b^2 - 4 a c = (-.05)^2 - 4 * .025 * 29.97,

which is negative. This means that there is no real-number solution; hence the solution is complex. The conclusion is that the depth for your model will not reach 50 cm.

Be sure you understand this entire interpretation, the meaning and significance of the discriminant, etc..

I also suspect an error at some point in solving the system, as a 50 cm depth would certainly be expected based on the data. Your steps are sound, so that's not a big concern, but in a case like this the lack of a solution would lead you to a recheck of details of your solution .

*@

*********************************************

Question: `qCompletion of Model second problem: grade average Give

your data in the form of grade vs. clock time ordered pairs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(0, 1)

(10, 1.790569)

(20, 2.118034)

(30, 2.369306)

(40, 2.581139)

(50, 2.767767)

(60, 2.936492)

(70, 3.09165)

(80, 3.236068)

(90, 3.371708)

(100, 3.5)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION: Grade vs. percent of assignments reviewed

(0, 1)

(10, 1.790569)

(20, 2.118034)

(30, 2.369306)

(40, 2.581139)

(50, 2.767767)

(60, 2.936492)

(70, 3.09165)

(80, 3.236068)

(90, 3.371708)

(100, 3.5). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat three points on your graph did you use as a basis for

your model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(10, 1.790569)

(50, 2.767767)

(100, 3.5)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED:

(20, 2.118034)

(50, 2.767767)

(100, 3.5)**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the first of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a(10^2) + 10b + c = 1.790569

100a + 10b + c = 1.790569

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 400a + 20b + c = 2.118034**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the second of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a(50^2) + 50b + c = 2.767767

2500a + 50b + c = 2.767767

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 2500a + 50b + c = 2.767767 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the third of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a(100^2) + 100b + c = 3.5

10,000a + 100b + c = 3.5

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 10,000a + 100b + c = 3.5 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the first of the equations you got when you

eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

7500a + 50b = .732233

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 7500a + 50b = .732233. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the second of the equations you got when you

eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2400a + 40b = .977198

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Subracting the first equation from the

third I go

9600a + 80b = 1.381966 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qExplain how you solved for one of the variables.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I eliminated b by multiplying the equation by 4 and -5 and then

combined the equations, and solved for a.

4(7500a + 50b = .732233) = 30,000a + 200b = 2.928932

5(2400a + 40b = .977198) = 12,000a - 200b = 4.88599

42,000a = 7.814922

a = ~ .0002

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated

the variable b. In order to do this, I multiplied the first new

equation by 80 and the second new equation by -50. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat values did you get for a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a = ~.0002

b = ~.012

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED:

a = -.0000876638

b = .01727 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

The difference in the given answer and my answer could very well be due

to rounding differences during the solutions process.

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `qWhat did you then get for c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

100(.0002) + 10(.012) + c = 1.790569

.02 + .12 + c = 1.790569

c = 1.65

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: c = 1.773. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is your function model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(.0002)x^2 + (.012)x + 1.65 = y

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** y = -.0000876638 x^2 + (.01727)x + 1.773 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is your percent-of-review prediction for the given

range of grades (give grade range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model desired average.

For example if the model is y = -.00028 x^2 + .06 x + .5 (your model

will probably be different from this) and the grade average desired is

3.3 we would find the percent of review x corresponding to grade

average y = 3.3 then we have

3.3 = -.00028 x^2 + .06 x + .5.

This equation is easily solved using the quadratic formula, remembering

to put the equation into the required form a x^2 + b x + c = 0.

We get two solutions, x = 69 and x = 146. Our solutions are therefore

69% grade review, which is realistically within the 0 - 100% range, and

146%, which we might reject as being outside the range of possibility.

To get a range you would solve two equations, on each for the percent

of review for the lower and higher ends of the range.

In many models the attempt to solve for a 4.0 average results in an

expression which includes the square root of a negative number; this

indicates that there is no real solution and that a 4.0 is not

possible. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

@&

The grade range was given and this should be solved.

*@

*********************************************

Question: `qWhat grade average corresponds to the given percent of

review (give grade average also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Here you plug in your percent of review for the variable. For

example if your model is y = -.00028 x^2 + .06 x + .5 and the percent

of review is 75, you plug in 75 for x and evaluate the result. The

result gives you the grade average corresponding to the percent of

review according to the model. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qHow well does your model fit the data (support your

answer)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

With the model I came up with, (.0002)a^2 + (.012)b + 1.65 = y, you can

plug the numbers from the data into the equation to see how close it is

to the actual.

Using 20 as a test, we have

400(.0002) + 20(.012) + 1.65 = y

.08 + .246 + 1.65 = 1.976

My model shows a grade average of 1.976, whereas the actual data shows

1.790569. This has a deviation of about .18.

Using a point in the middle, 60, we can see if the data is still a bit

high.

3600(.0002) + 60(.012) + 1.65 = y

.72 + .72 + 1.65 = 3.09

The actual data shows the grade average to be 2.936492 at this point in

the time. This is a deviation of less than .16. This a little higher

than the original data, but closer than the first tested point.

Using a later data point, 80, we can see how this holds up farther into

the process.

6400(.0002) + 80(.012) + 1.65 = y

1.28 + .96 + 1.65 = 3.89

This is still high compared to the original data, which showed 3.236068

for 80 percent of assignments reviewed. This has a deviation of about

.66, so it is getting farther off of the actual data.

As a whole, my model is pretty close to the actual data, but would

probably have been a lot closer if I didn't round while finding a, b,

and c.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You should have evaluated your function at each given percent of

review-i.e., at 0, 10, 20, 30, . 100 to get the predicted grade average

for each. Comparing your results with the given grade averages shows

whether your model fits the data. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I didn't use all points, but I feel as though I did a decent amount of

testing by using an early, mid, and late point in the data.

------------------------------------------------

Self-critique Rating:OK

@&

Very good. but the preceding problems should have been solved as well.

*@

*********************************************

Question: `qillumination vs. distance

Give your data in the form of illumination vs. distance ordered pairs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(1, 935.1395)

(2, 264.4411)

(3, 105.1209)

(4, 61.01488)

(5, 43.06238)

(6, 25.91537)

(7, 19.92772)

(8, 16.27232)

(9, 11.28082)

(10, 9.484465)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION: (1, 935.1395)

(2, 264..4411)

(3, 105.1209)

(4, 61.01488)

(5, 43.06238)

(6, 25.91537)

(7, 19.92772)

(8, 16.27232)

(9, 11.28082)

(10, 9.484465)**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat three points on your graph did you use as a basis for

your model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(1, 935.1395)

(4, 61.01488)

(10, 9.484465)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED:

(2, 264.4411)

(4, 61.01488)

(8, 16.27232) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the first of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a + b + c = 935.1395

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 4a + 2b + c = 264.4411**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the second of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

16a + 4b + c = 61.01488

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 16a + 4b + c = 61.01488**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the third of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

100a + 10b + c = 9.484465

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 64a + 8b + c = 16.27232**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the first of the equations you got when you

eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

15a + 3b = -874.12462

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 48a + 4b = -44.74256**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the second of the equations you got when you

eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

84a + 6b = -51.530415

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 60a + 6b = -248.16878**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qExplain how you solved for one of the variables.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I multiplied my equations by -2 and 1. As follows

-2(15a + 3b = -874.12462) = -30a - 6b = 1748.24924

1(84a + 6b = -51.530415) = 84a + 6b = -51.530415

Then I merged the two together and solved for a.

54a = 1696.718825

a = 31.42

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: I solved for a by eliminating the

variable b. I multiplied the first new equation by 4 and the second

new equation by -6 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat values did you get for a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a = 31.42

b = -448.475

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: a = 15.088, b = -192.24 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Well, somehow my answers are off by more than double what the given answer has. I am not quite sure where I messed up, unless using the first and final data points skewed my model.

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat did you then get for c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

c = 1352.1945

confidence rating #$&*:1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: c = 588.5691**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

As I expected, my solution for c is also off, since my solution for a and b were both well off the given solution. I haven't looked back at my math yet, but I will be looking back over it.

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is your function model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

My functional model, which will be off, is

y = (31.42)x^2 + (-448.475)x + 1352.1945

confidence rating #$&*:1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: y = (15.088) x^2 - (192.24)x + 588.5691

**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

My functional model is off of the given solution due to a mistake made somewhere when finding a. I will have to work through this again to see where exactly the problem occurred.

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `qWhat is your illumination prediction for the given

distance (give distance also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

At a distance of 1.6, my models prediction is...

(31.42)1.6^2 + (-448.475)1.6 + 1352.1945 = y

80.4352 - -637.1248 + 1352.1945 = 795.5049 w/m^2

confidence rating #$&*:1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The given distance was 1.6 Earth

distances from the sun. My illumination prediction was 319.61 w/m^2,

obtained by evaluating my function model for x = 1.6. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Again, my answer was off due to the same resons as listed above.

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat distances correspond to the given illumination range

(give illumination range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

@&

This is an important problem and should have been solved.

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model and the range of averages.

For example if the model is y =9.4 r^2 - 139 r + 500 and the

illumination range is 25 to 100 we would find the distance r

corresponding to illumination y = 25, then the distance r corresponding

to illumination y = 100, by solving the equations

25=9.4 r^2 - 139 r + 500

and

100 =9.4 r^2 - 139 r + 500

Both of these equations are easily solved using the quadratic formula,

remembering to put both into the required form a r^2 + b r + c = 0.

Both give two solutions, only one solution of each having and

correspondence at all with the data.

The solutions which correspond to the data are

r = 3.9 when y = 100 and r = 5.4 when y = 25.

So when the distance x has range 3.9 - 5.4 the illumination range is 25

to 100.

Note that a quadratic model does not fit this data well. Sometimes

data is quadratic in nature, sometimes it is not. We will see as the

course goes on how some situations are accurately modeled by quadratic

functions, while others are more accurately modeled by exponential or

power functions. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qWhat distances correspond to the given illumination range

(give illumination range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

@&

This is an important problem and should have been solved.

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model and the range of averages.

For example if the model is y =9.4 r^2 - 139 r + 500 and the

illumination range is 25 to 100 we would find the distance r

corresponding to illumination y = 25, then the distance r corresponding

to illumination y = 100, by solving the equations

25=9.4 r^2 - 139 r + 500

and

100 =9.4 r^2 - 139 r + 500

Both of these equations are easily solved using the quadratic formula,

remembering to put both into the required form a r^2 + b r + c = 0.

Both give two solutions, only one solution of each having and

correspondence at all with the data.

The solutions which correspond to the data are

r = 3.9 when y = 100 and r = 5.4 when y = 25.

So when the distance x has range 3.9 - 5.4 the illumination range is 25

to 100.

Note that a quadratic model does not fit this data well. Sometimes

data is quadratic in nature, sometimes it is not. We will see as the

course goes on how some situations are accurately modeled by quadratic

functions, while others are more accurately modeled by exponential or

power functions. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

*********************************************

Question: `qWhat distances correspond to the given illumination range

(give illumination range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

@&

This is an important problem and should have been solved.

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model and the range of averages.

For example if the model is y =9.4 r^2 - 139 r + 500 and the

illumination range is 25 to 100 we would find the distance r

corresponding to illumination y = 25, then the distance r corresponding

to illumination y = 100, by solving the equations

25=9.4 r^2 - 139 r + 500

and

100 =9.4 r^2 - 139 r + 500

Both of these equations are easily solved using the quadratic formula,

remembering to put both into the required form a r^2 + b r + c = 0.

Both give two solutions, only one solution of each having and

correspondence at all with the data.

The solutions which correspond to the data are

r = 3.9 when y = 100 and r = 5.4 when y = 25.

So when the distance x has range 3.9 - 5.4 the illumination range is 25

to 100.

Note that a quadratic model does not fit this data well. Sometimes

data is quadratic in nature, sometimes it is not. We will see as the

course goes on how some situations are accurately modeled by quadratic

functions, while others are more accurately modeled by exponential or

power functions. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

@&

Good, except for the parts involving quadratic equations. You did indicate that one yielded a complex solution, which can happen; see my note on that one.

You left the other problems that would have required the application of the quadratic formula blank. These are important problems. You should submit your solutions to those parts of the given problems.

*@