#$&* course mth 173 001. `query1
.............................................
Given Solution: ** Continue to the next question ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qAccording to your graph what would be the temperatures at clock times 7, 19 and 31? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (.013)7^2 + 7(-1.83) + 92 = y .637 - 12.81 + 92 = 78.553 (.013)19^2 + 19(-1.83) + 92 = y 4.693 - 34.77 + 92 = 61.923 (.013)31^2 + 31(-1.83) + 92 = y 12.493 - 56.73 + 92 = 47.763 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** Continue to the next question ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat three points did you use as a basis for your quadratic model (express as ordered pairs)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (10, 75) (30, 49) (60, 30) confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** A good choice of points `spreads' the points out rather than using three adjacent points. For example choosing the t = 10, 20, 30 points would not be a good idea here since the resulting model will fit those points perfectly but by the time we get to t = 60 the fit will probably not be good. Using for example t = 10, 30 and 60 would spread the three points out more and the solution would be more likely to fit the data. The solution to this problem by a former student will be outlined in the remaining nswers'. STUDENT SOLUTION (this student probably used a version different from the one you used; this solution is given here for comparison of the steps, you should not expect that the numbers given here will be the same as the numbers you obtained when you solved the problem.) For my quadratic model, I used the three points (10, 75) (20, 60) (60, 30). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat is the first equation you got when you substituted into the form of a quadratic? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I used (10, 75) as my first point in the equations and got... 100a + 10b + c = 75 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The equation that I got from the first data point (10,75) was 100a + 10b +c = 75.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat is the second equation you got when you substituted into the form of a quadratic? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The second data point I used was (30, 49) which gave me the equation 900a + 30b + c = 49 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The equation that I got from my second data point was 400a + 20b + c = 60 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat is the third equation you got when you substituted into the form of a quadratic? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I used the data point (60, 30) as my third point and got the equation... 3600a + 60b + c = 30 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The equation that I got from my third data point was 3600a + 60b + c = 30. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat multiple of which equation did you first add to what multiple of which other equation to eliminate c, and what is the first equation you got when you eliminated c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Since c has a coefficient of one in all of the equations, I just subtracted equation 2 from equation 3 to get... 2700a + 30b = -19 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: First, I subtracted the second equation from the third equation in order to eliminate c. By doing this, I obtained my first new equation 3200a + 40b = -30. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qTo get the second equation what multiple of which equation did you add to what multiple of which other quation, and what is the resulting equation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For the second equation I felt the obvious answer was to subtract the first equation from the third this time, which gave me... 3500a + 50b = -45 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: This time, I subtracted the first equation from the third equation in order to again eliminate c. I obtained my second new equation: 3500a + 50b = -45** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhich variable did you eliminate from these two equations, and what was the value of the variable for which you solved these equations? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I decided to eliminated b, since it has the smaller coefficients, which would make the math easier. I did this by using the following equations... -3(3500a + 50b = -45) = -10500a - 150a = 135 5(2700a + 30b = -19) = 13500 + 50b = -95 I then combined the equations, with the b's cancelling each other out. 3000a = 40 was the resulting equation. Leaving a to equal 40/3000 or 0.013333 repeating. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: In order to solve for a and b, I decided to eliminate b because of its smaller value. In order to do this, I multiplied the first new equation by -5 -5 ( 3200a + 40b = -30) and multiplied the second new equation by 4 4 ( 3500a + 50b = -45) making the values of -200 b and 200 b cancel one another out. The resulting equation is -2000 a = -310. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: `qWhat equation did you get when you substituted this value into one of the 2-variable equations, and what did you get for the other variable? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I used 3500(40/3000) + 50b = -45 46.666667 + 50b = -45 Subtract 46.666667 from both sides 50b = -91.666667 b = -1.83333 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: After eliminating b, I solved a to equal .015 a = .015 I then substituted this value into the equation 3200 (.015) + 40b = -30 and solved to find that b = -1.95. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): My numbers are a little different from the given solution, due to the given soultion rounding its answers, where I tried to keep mine as exact as possible using decimals. ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat is the value of c obtained from substituting into one of the original equations? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 100(40/3000) + 10(-1.83) + c = 75 -17 + c = 75 c = ~92 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: By substituting both a and b into the original equations, I found that c = 93 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Since seeing the given answer was rounding, I rounded a little in my answer here so that the m,ath would be a little easier. The different rounding techniques used caused my answer to be off by one. I am okay with this, as I made it through all of the steps correctly. ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: `qWhat is the resulting quadratic model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = (.013)x^2 + (-1.83)x + 92 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Therefore, the quadratic model that I obtained was y = (.015) x^2 - (1.95)x + 93. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat did your quadratic model give you for the first, second and third clock times on your table, and what were your deviations for these clock times? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (.013)0 + (-1.83)0 + 92 = 92 My first point would have been 92, when the actual first point was 95. My deviation for this clock time is 3. My second point (.013)10^2 + 10(-1.83) + 92 = y 1.3 + -18.3 + 92 = 75 My second clock time ends up giving me a temperature of 75, which actually matches the temperature on the actual table, so a deviation of 0. The third point is at t = 20. (.013)20^2 + 20(-1.83) + 92 = y. 5.2 - 36.6 + 92 = 60.6 My third clock time give me a temperature of 60.6, whie the actual temperature was 60. This results in a deviation of .6 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: This model y = (.015) x^2 - (1.95)x + 93 evaluated for clock times 0, 10 and 20 gave me these numbers: First prediction: 93 Deviation: 2 Then, since I used the next two ordered pairs to make the model, I got back }the exact numbers with no deviation. So. the next two were Fourth prediction: 48 Deviation: 1 Fifth prediction: 39 Deviation: 2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat was your average deviation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: My 3 deviations were 3, 0, and 0.6. My average deviation was 1.2. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: My average deviation was .6 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qIs there a pattern to your deviations? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: My deviations started out lower than the original temperature, but gradually worked their way to being warmer than the original temperatures. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: There was no obvious pattern to my deviations. INSTRUCTOR NOTE: Common patterns include deviations that start positive, go negative in the middle then end up positive again at the end, and deviations that do the opposite, going from negative to positive to negative. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qHave you studied the steps in the modeling process as presented in Overview, the Flow Model, Summaries of the Modeling Process, and do you completely understand the process? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I have studied the steps, and as of this point in time feel that I understand the process. Although, I am sure when testing time comes, I will have a million questions run through my head. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Yes, I do completely understand the process after studying these outlines and explanations. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qHave you memorized the steps of the modeling process, and are you gonna remember them forever? Convince me. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I have not completely memorized the process as of yet, but I will continue working to memorize them over the next few days. confidence rating #$&*:2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Yes, sir, I have memorized the steps of the modeling process at this point. I also printed out an outline of the steps in order to refresh my memory often, so that I will remember them forever!!! INSTRUCTOR COMMENT: OK, I'm convinced. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Although I haven't completemely memorized every step in the modeling process I will be printing off a copy to go over during my free time until I am able to memorize the entire process. ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: `qQuery Completion of Model first problem: Completion of model from your data.Give your data in the form of depth vs. clock time ordered pairs. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (4.2, 80.2) (8.4, 72.9) (12.6, 67.5) (16.8, 63.3) (21, 59.3) (25.2, 55) confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION: Here are my data which are from the simulated data provided on the website under randomized problems. (5.3, 63.7) (10.6. 54.8) (15.9, 46) (21.2, 37.7) (26.5, 32) (31.8, 26.6). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat three points on your graph did you use as a basis for your model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (4.2, 80.2) (12.6, 67.5) (25.2, 55) confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: As the basis for my graph, I used ( 5.3, 63.7) (15.9, 46) (26.5, 32)** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qGive the first of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a(4.2^2) + 4.2b + c = 80.2 17.64a + 4.2b + c = 80.2 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The point (5.3, 63.7) gives me the equation 28.09a + 5.3b + c = 63.7 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qGive the second of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a(12.6^2) + 12.6b + c = 67.5 158.76a + 12.6b + c = 67.5 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The point (15.9, 46) gives me the equation 252.81a +15.9b + c = 46 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qGive the third of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a(25.2^2) + 25.2b + c = 55 635.04a + 25.2b + c = 55 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The point (26.5,32) gives me the equation 702.25a + 26.5b + c = 32. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qGive the first of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I subtracted the first equation from the third equation, and got 617.4a - 21b = -25.2 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Subtracting the second equation from the third gave me 449.44a + 10.6b = -14. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qGive the second of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I subtracted the second equation from the third to get... 476.28a + 12.6b = -12.5 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Subtracting the first equation from the third gave me 674.16a + 21.2b = -31.7. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qExplain how you solved for one of the variables. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I eliminated b from the equations by multiplying the two equations by 3 and -5 as follows. 3(617.4a + 21b = -25.2) = 1852.2a + 63b = -75.6 -5(476.28a + 12.6b = -12.5) = -2381.4 - 63b = 62.5 Which gave me the following equations when I merged the two together. -529.2a = -13.1 a = ~~.025 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated b by multiplying the first equation by 21.2, which was the b value in the second equation. Then, I multiplied the seond equation by -10.6, which was the b value of the first equation, only I made it negative so they would cancel out. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat values did you get for a and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Per the previous question, a = 0.025, roughly. b can be found by substituting a in one of the two variable euqations. 476.28(.025) + 12.6b = -12.5 11.907 + 12.6b = -12.5 12.6b = -.593 b = ~~ -0.05 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: a = .0165, b = -2 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat did you then get for c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 17.64(.025) + 4.2(-.05) + c = 80.2 .441 - .21 + c = 80.2 c = 79.969 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: c = 73.4 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat is your function model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = (.025)x^2 + (-.05)x + 79.969 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: y = (.0165)x^2 + (-2)x + 73.4. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat is your depth prediction for the given clock time (give clock time also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I don't see a given time, so I am just going to use 20 seconds as a time. (.025)20^2 + (-.05)20 + 79.969 = y 10 - 1 + 79.969 = 88.969cm confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The given clock time was 46 seconds, and my depth prediction was 16.314 cm.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat clock time corresponds to the given depth (give depth also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Again, I don't see a given depth, so I will use 50cm as an example. 50 = (.025)x^2 + (-.05)x + 79.969 Then we would solve for x by factoring out the equation. 0 = (.025)x^2 + (-.05)x + 29.969 ??????I am not sure how to go any further on this problem. I even tried to use an online quadratic equation solver, and am not sure of the ansewr, as it is said to have complex roots.??????? confidence rating #$&*:0 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** INSTRUCTOR COMMENT: The exercise should have specified a depth. The specifics will depend on your model and the requested depth. For your model y = (.0165)x^2 + (-2)x + 73.4, if we wanted to find the clock time associated with depth 68 we would note that depth is y, so we would let y be 68 and solve the resulting equation: 68 = .01t^2 - 1.6t + 126 using the quadratic formula. There are two solutions, x = 55.5 and x = 104.5, approximately. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ????The given solutions didn't show how to finish solving the equation.???? I know the quadratic formula is used, but using a quadratic calculator, I get ""1 + 34.####"" and ""1 - 34.######"". That seems plausible, but I don't understand why it is ""1 +..."" ------------------------------------------------ Self-critique Rating:3
.............................................
Given Solution: ** STUDENT SOLUTION: Grade vs. percent of assignments reviewed (0, 1) (10, 1.790569) (20, 2.118034) (30, 2.369306) (40, 2.581139) (50, 2.767767) (60, 2.936492) (70, 3.09165) (80, 3.236068) (90, 3.371708) (100, 3.5). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat three points on your graph did you use as a basis for your model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (10, 1.790569) (50, 2.767767) (100, 3.5) confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: (20, 2.118034) (50, 2.767767) (100, 3.5)** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qGive the first of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a(10^2) + 10b + c = 1.790569 100a + 10b + c = 1.790569 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 400a + 20b + c = 2.118034** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qGive the second of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a(50^2) + 50b + c = 2.767767 2500a + 50b + c = 2.767767 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 2500a + 50b + c = 2.767767 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qGive the third of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a(100^2) + 100b + c = 3.5 10,000a + 100b + c = 3.5 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 10,000a + 100b + c = 3.5 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qGive the first of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 7500a + 50b = .732233 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 7500a + 50b = .732233. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qGive the second of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 2400a + 40b = .977198 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: Subracting the first equation from the third I go 9600a + 80b = 1.381966 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qExplain how you solved for one of the variables. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I eliminated b by multiplying the equation by 4 and -5 and then combined the equations, and solved for a. 4(7500a + 50b = .732233) = 30,000a + 200b = 2.928932 5(2400a + 40b = .977198) = 12,000a - 200b = 4.88599 42,000a = 7.814922 a = ~ .0002 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated the variable b. In order to do this, I multiplied the first new equation by 80 and the second new equation by -50. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat values did you get for a and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a = ~.0002 b = ~.012 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: a = -.0000876638 b = .01727 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): The difference in the given answer and my answer could very well be due to rounding differences during the solutions process. ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: `qWhat did you then get for c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 100(.0002) + 10(.012) + c = 1.790569 .02 + .12 + c = 1.790569 c = 1.65 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: c = 1.773. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat is your function model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (.0002)x^2 + (.012)x + 1.65 = y confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** y = -.0000876638 x^2 + (.01727)x + 1.773 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat is your percent-of-review prediction for the given range of grades (give grade range also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The precise solution depends on the model desired average. For example if the model is y = -.00028 x^2 + .06 x + .5 (your model will probably be different from this) and the grade average desired is 3.3 we would find the percent of review x corresponding to grade average y = 3.3 then we have 3.3 = -.00028 x^2 + .06 x + .5. This equation is easily solved using the quadratic formula, remembering to put the equation into the required form a x^2 + b x + c = 0. We get two solutions, x = 69 and x = 146. Our solutions are therefore 69% grade review, which is realistically within the 0 - 100% range, and 146%, which we might reject as being outside the range of possibility. To get a range you would solve two equations, on each for the percent of review for the lower and higher ends of the range. In many models the attempt to solve for a 4.0 average results in an expression which includes the square root of a negative number; this indicates that there is no real solution and that a 4.0 is not possible. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating:
.............................................
Given Solution: ** Here you plug in your percent of review for the variable. For example if your model is y = -.00028 x^2 + .06 x + .5 and the percent of review is 75, you plug in 75 for x and evaluate the result. The result gives you the grade average corresponding to the percent of review according to the model. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qHow well does your model fit the data (support your answer)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: With the model I came up with, (.0002)a^2 + (.012)b + 1.65 = y, you can plug the numbers from the data into the equation to see how close it is to the actual. Using 20 as a test, we have 400(.0002) + 20(.012) + 1.65 = y .08 + .246 + 1.65 = 1.976 My model shows a grade average of 1.976, whereas the actual data shows 1.790569. This has a deviation of about .18. Using a point in the middle, 60, we can see if the data is still a bit high. 3600(.0002) + 60(.012) + 1.65 = y .72 + .72 + 1.65 = 3.09 The actual data shows the grade average to be 2.936492 at this point in the time. This is a deviation of less than .16. This a little higher than the original data, but closer than the first tested point. Using a later data point, 80, we can see how this holds up farther into the process. 6400(.0002) + 80(.012) + 1.65 = y 1.28 + .96 + 1.65 = 3.89 This is still high compared to the original data, which showed 3.236068 for 80 percent of assignments reviewed. This has a deviation of about .66, so it is getting farther off of the actual data. As a whole, my model is pretty close to the actual data, but would probably have been a lot closer if I didn't round while finding a, b, and c. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** You should have evaluated your function at each given percent of review-i.e., at 0, 10, 20, 30, . 100 to get the predicted grade average for each. Comparing your results with the given grade averages shows whether your model fits the data. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I didn't use all points, but I feel as though I did a decent amount of testing by using an early, mid, and late point in the data. ------------------------------------------------ Self-critique Rating:OK
.............................................
Given Solution: ** STUDENT SOLUTION: (1, 935.1395) (2, 264..4411) (3, 105.1209) (4, 61.01488) (5, 43.06238) (6, 25.91537) (7, 19.92772) (8, 16.27232) (9, 11.28082) (10, 9.484465)** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat three points on your graph did you use as a basis for your model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (1, 935.1395) (4, 61.01488) (10, 9.484465) confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: (2, 264.4411) (4, 61.01488) (8, 16.27232) ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qGive the first of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a + b + c = 935.1395 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 4a + 2b + c = 264.4411** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qGive the second of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 16a + 4b + c = 61.01488 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 16a + 4b + c = 61.01488** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qGive the third of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 100a + 10b + c = 9.484465 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 64a + 8b + c = 16.27232** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qGive the first of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 15a + 3b = -874.12462 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 48a + 4b = -44.74256** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qGive the second of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 84a + 6b = -51.530415 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: 60a + 6b = -248.16878** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qExplain how you solved for one of the variables. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I multiplied my equations by -2 and 1. As follows -2(15a + 3b = -874.12462) = -30a - 6b = 1748.24924 1(84a + 6b = -51.530415) = 84a + 6b = -51.530415 Then I merged the two together and solved for a. 54a = 1696.718825 a = 31.42 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: I solved for a by eliminating the variable b. I multiplied the first new equation by 4 and the second new equation by -6 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat values did you get for a and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: a = 31.42 b = -448.475 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: a = 15.088, b = -192.24 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Well, somehow my answers are off by more than double what the given answer has. I am not quite sure where I messed up, unless using the first and final data points skewed my model. ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat did you then get for c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: c = 1352.1945 confidence rating #$&*:1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: c = 588.5691** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): As I expected, my solution for c is also off, since my solution for a and b were both well off the given solution. I haven't looked back at my math yet, but I will be looking back over it. ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat is your function model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: My functional model, which will be off, is y = (31.42)x^2 + (-448.475)x + 1352.1945 confidence rating #$&*:1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: y = (15.088) x^2 - (192.24)x + 588.5691 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): My functional model is off of the given solution due to a mistake made somewhere when finding a. I will have to work through this again to see where exactly the problem occurred. ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: `qWhat is your illumination prediction for the given distance (give distance also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: At a distance of 1.6, my models prediction is... (31.42)1.6^2 + (-448.475)1.6 + 1352.1945 = y 80.4352 - -637.1248 + 1352.1945 = 795.5049 w/m^2 confidence rating #$&*:1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT SOLUTION CONTINUED: The given distance was 1.6 Earth distances from the sun. My illumination prediction was 319.61 w/m^2, obtained by evaluating my function model for x = 1.6. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Again, my answer was off due to the same resons as listed above. ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `qWhat distances correspond to the given illumination range (give illumination range also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution:
.............................................
Given Solution: ** The precise solution depends on the model and the range of averages. For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations 25=9.4 r^2 - 139 r + 500 and 100 =9.4 r^2 - 139 r + 500 Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data. The solutions which correspond to the data are r = 3.9 when y = 100 and r = 5.4 when y = 25. So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100. Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. ** " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `qWhat distances correspond to the given illumination range (give illumination range also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution:
.............................................
Given Solution: ** The precise solution depends on the model and the range of averages. For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations 25=9.4 r^2 - 139 r + 500 and 100 =9.4 r^2 - 139 r + 500 Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data. The solutions which correspond to the data are r = 3.9 when y = 100 and r = 5.4 when y = 25. So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100. Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. ** " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&! ********************************************* Question: `qWhat distances correspond to the given illumination range (give illumination range also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution:
.............................................
Given Solution: ** The precise solution depends on the model and the range of averages. For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations 25=9.4 r^2 - 139 r + 500 and 100 =9.4 r^2 - 139 r + 500 Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data. The solutions which correspond to the data are r = 3.9 when y = 100 and r = 5.4 when y = 25. So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100. Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. ** " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!#*&!