query 5

#$&*

course mth 173

Question: `q Growth rate and growth factor: Describe the difference between growth rate and growth factor and give a short example of how each might be used

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The growth rate will tell us how much something will change over time, whereas the growth factor can take the quantity and give us the new quantity. In relation to the class notes, .07 would be a growth rate, whereas 1.07 would be the growth factor.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Specific statements:

When multiplied by a quantity the growth rate tells us how much the quantity will change over a single period.

When multiplied by the quantity the growth factor gives us the new quantity at the end of the next period. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q Class notes #05 trapezoidal representation.

Explain why the slope of a depth vs. time trapezoid represents the average rate of change of the depth with respect to the time during the time interval represented

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The average rate of change of depth would be `dy/`dt. This would be the same as the rise over the run on a graph, which is the slope of the trapezoid.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:3

** GOOD ANSWER BY STUDENT WITH INSTRUCTOR COMMENTS:

The slope of the trapezoids will indicate rise over run

or the slope will represent a change in depth / time interval

thus an average rate of change of depth with respect to time

INSTRUCTOR COMMENTS:

More detail follows:

** To explain the meaning of the slope you have to reason the question out in terms of rise and run and slope.

For this example rise represents change in depth and run represent change in clock time; rise / run therefore represents change in depth divided by change in clock time, which is the average rate of change. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q Explain why the area of a rate vs. time trapezoid for a given time interval represents the change in the quantity corresponding to that time interval.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The average altitude of the trapezoid is the average rate. This is because the trapezoid width represents the time, while the height of each side represents the depth at that time. So, putting them all together will give us the average rate.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

**STUDENT RESPONSE WITH INSTRUCTOR COMMENTS:

The area of a rate vs. time graph rep. the change in quantity.

Calculating the area under the graph is basically integration

The accumulated area of all the trapezoids for a range will give us thetotal change in quantity.

The more trapezoids used the more accurate the approx.

INSTRUCTOR COMMENTS: All very good but the other key point is that the average altitude represents the average rate, which when multiplied by the width which represents time interval gives the change in quantity

You have to reason this out in terms of altitudes, widths and areas.

For the rate of depth change example altitude represents rate of depth change so average altitude represents average rate of depth change, and width represents change in clock time.

average altitude * width therefore represents ave rate of depth change * duration of time interval = change in depth.

For the rate of change of a quantity other than depth, the reasoning is identical except you'll be talking about something besides depth. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q ÿÿÿ #17. At 10:00 a.m. a certain individual has 550 mg of penicillin in her bloodstream. Every hour, 11% of the penicillin present at the beginning of the hour is removed by the end of the hour. What is the function Q(t)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

With a growth rate of -.11 we can get the next hours amount by multiplying by .89, which is 1 - . 11.

Q(t) = 550 * .89

In order to make this a function that will work for any number of hours, we must use t as an exponent of .89.

Q(t) = 550*(0.89)^t

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Every hour 11% or .11 of the total is lost so the growth rate is -.11 and the growth factor is 1 + r = 1 + (-.11) = .89 and we have

Q(t) = Q0 * (1 + r)^t = 550 mg (.89)^t or

Q(t)=550(.89)^tÿ **

How much antibiotic is present at 3:00 p.m.?

** 3:00 p.m. is 5 hours after the initial time so at that time there will be

Q(5) = 550 mg * .89^5 = 307.123mg

in the blood **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q Describe your graph and explain how it was used to estimate half-life.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Starting from any point on the graph we first project horizontally and vertically to the coordinate axes to obtain the coordinates of that point.

The vertical coordinate represents the quantity Q(t), so we find the point on the vertical axis which is half as high as the vertical coordinate of our starting point. We then draw a horizontal line directly over to the graph, and project this point down.

The horizontal distance from the first point to the second will be the distance on the t axis between the two vertical projection lines. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q What is the equation to find the half-life?ÿ What is its most simplified form?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I am not sure of the half-life equation, as it is not mention in any of the class note I have seen this far, and I can’t remember it from chemistry. I think it will use ln just like the doubling time formula, but I can’t be sure.

confidence rating #$&*:0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Q(doublingTime) = 1/2 Q(0)or

550 mg * .89^doublingTIme = .5 * 550 mg. Dividing thru by the 550 mg we have

.89^doublingTime = .5.

We can use trial and error to find an approximate value for doublingTIme (later we use logarithms to get the accurate solution). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I see the half-life formula is much simpler than I thought when I first looked at the problem. For this example it is only 550 * .89^doublingtime = .5 * 550, with the 500 cancelling itself out. Almost like the doublingTime formula.

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q #19. For the function Q(t) = Q0 (1.1^ t), a value of t such that Q(t) lies between .05 Q0 and .1 Q0.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

We can take .5Q0 = Q0(1.1^t) then divide out the Q0, we get

.5 = 1.1^t We can use trial and error to find that t = roughly, -31.4

We can use the same steps to find out what t needs to be to get .1Q0.

After doing the math, we find .1Q0 to need a t of -24.2

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q For what values of t did Q(t) lie between .005 Q0 and .01 Q0?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This question is similar to the last one. In that, we will use the same steps to find the solution.

.005Q0 = Q0(1.1^t)

.005 = (1.1^t)

With trial and error we find t to be equal to -55.6, roughly.

For . 01, t is -48.3.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Any value between about t = -24.2 and t = -31.4 will result in Q(t) between .05 Q0 and .1 Q0.

Note that these values must be negative, since positive powers of 1.1 are all greater than 1, resulting in values of Q which are greater than Q0.

Solving Q(t) = .05 Q0 we rewrite this as

Q0 * 1.1^t = .05 Q0. Dividing both sides by Q0 we get

1.1^t = .05. We can use trial and error (or if you know how to use them logarithms) to approximate the solution. We get

t = -31.4 approx.

Solving Q(t) = .1 Q0 we rewrite this as

Q0 * 1.1^t = .1 Q0. Dividing both sides by Q0 we get

1.1^t = .1. We can use trial and error (or if you know how to use them logarithms) to approximate the solution. We get

t = -24.2 approx.

(The solution for .005 Q0 is about -55.6, for .01 is about -48.3

For this solution any value between about t = -48.3 and t = -55.6 will work). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q explain why the negative t axis is a horizontal asymptote for this function.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This is because as t grows, 1.1^t will also grow. The opposite is true for a negative t. A t gets smaller, 1.1^-t will get smaller, until it reaches 0.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The value of 1.1^t increases for increasing t; as t approaches infinity 1.1^t also approaches infinity. Since 1.1^-t = 1 / 1.1^t, we see that for increasingly large negative values of t the value of 1.1^t will be smaller and smaller, and would in fact approach zero. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q #22. What value of b would we use to express various functions in the form y = A b^x? What is b for the function y = 12 ( e^(-.5x) )?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To find b in the second function we have to do a little algebra.

12 e^(-.5 x) = 12 (e^-.5)^x, which is the same as 12 * .61^x. So, in the for of y = A b^x, b is .61.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** 12 e^(-.5 x) = 12 (e^-.5)^x = 12 * .61^x, approx.

So this function is of the form y = A b^x for b = .61 approx.. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q what is b for the function y = .007 ( e^(.71 x) )?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This problem can be worked out the same way as the previous one.

.007 * e^(.71x) = .007 * (e^.71)^x = .007 * 2.04 ^ x.

So, b for this function is 2.04, roughly.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** .007 e^(.71 x) = .007 (e^.71)^x = .007 * 2.04^x, approx.

So this function is of the form y = A b^x for b = 2.041 approx.. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q what is b for the function y = -13 ( e^(3.9 x) )?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Again, this question is similar to the previous 2.

-13 * (e^3.9)^x , with b being e^3.9, which is roughly 49.4.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** -13 e^(3.9 x) = -13 (e^3.9)^x = -13 * 49.4^x, approx.

So this function is of the form y = A b^x for b = 49.4 approx.. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q List these functions, each in the form y = A b^x.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y = 12 * .61^x

Y= .007 * 2.04 ^ x

Y= -13 * 49.4^x

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The functions are

y=12(.6065^x)

y=.007(2.03399^x) and

y=-13(49.40244^x) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q query text problem 1.1.31 5th; 1.1.23 4th dolphin energy prop cube of vel

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** A proportionality to the cube would be E = k v^3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q query text problem 1.1.37 5th; 1.1.32 4th temperature function H = f(t), meaning of H(30)=10, interpret vertical and horizontal intercepts

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The interpretation would be that the vertical intercept represents the temperature at clock time t = 0, while the horizontal intercept represents the clock time at which the temperature reaches zero. **

what is the meaning of the equation H(30) = 10?

** This means that when clock time t is 30, the temperature H is 10. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q What is the meaning of the vertical intercept?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The vertical intercept is the quantity at clock time = 0.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** This is the value of H when t = 0--i.e., the temperature at clock time 0. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q What is the meaning of the horizontal intercept?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The horizontal intercept is the time at which the quantity = 0.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** This is the t value when H = 0--the clock time when temperature reaches 0 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q query text problem 1.1.40 5th; 1.1.31 4th. Water freezes 0 C, 32 F; boils 100 C, 212 F. Give your solution.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The graph contains points (0, 32) and (100, 212). The slope is therefore (212-32) / (100-0) = 1.8.

The y-intercept is 32 so the equation of the line is

y = 1.8 x + 32, or using F and C

F = 1.8 C + 32.

To find the Fahrenheit temp corresponding to 20 C we substitute C = 20 into F = 1.8 C + 32 to get

F = 1.8 * 20 + 32 = 36 + 32 = 68

The two temperatures will be equal when F = C. Substituting C for F in F = 1.8 C + 32 we get

C = 1.8 C + 32. Subtracting 1.8 C from both sides we have

-.8 C = 32 or

C = 32 / (-.8) = -40.

The scales read the same at -40 degrees. **

STUDENT QUESTION

I understand all work shown except the answer for d? I understand how to substaute and see how you worked it, but don’t understand the logic for why this works ?

INSTRUCTOR RESPONSE

You have a linear function which gives you F when you substitute C.

That means that the graph of F vs. C is a straight line.

According to the given information the straight line passes through the points (0, 32) and (100, 212).

Given two points, there are a variety of ways to get the equation of the corresponding straight line. The given solution finds the slope, then uses slope-intercept form of the equation of a straight line.

Alternatively you could use the point-point form of the equation, which would lead to the same result.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

@&

Good overall, but you did leave a number of questions blank.

*@